
A0-A118 039

UNCLASSIFIED

AIR FORCE INST OF TECH KRI»HT-PATT£RSON AFB OH SCHOO—ETC F/O 9/2
SUPER-CAD: AN INTEGRATED STRUCTURE FOR DESI6N AUTOMATION.(U)
JUN 62 HS CABLE
AFIT/9CS/EE/S2J-7 NL

/ 2 if II
AD n
AII8W9 • uUUUHUII

1 1.0 DIM

ma
1 I—

an. ISM
II • u
IB II lä, itt

MICROCOPY RESOLUTION TtST CHART

NAIinNM BUW '•• 01 STAND/ (i.. |963 1

% 4

AFIT/GCS/EE/82J-7

Acc^rrsion For

HT1S GRAM
DTT'-; IAB
Unannounced
Just Uloation

>C
1.1

D

By _
Dictrib-.it ion/

Availability Codes
Avail ;-.i../or

Di^t Special

ft

SUPER-CAD:

AN INTEGRATED STRUCTURE FOR DESIGN AUTOMATION

THESIS

AFIT/GCS/EE/82J-7 Hobart S. Cable, II
Major USAF

Approved for public release; distribution unlimited.

J

AFIT/ÜCS/EE/82J-7

SUPER-CAD: AN INTEGRATED STRUCTURE FOR DESIGN AUTOMATION

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

by

Hobart S. Cable, II, B.S.

Maj or USAF

Graduate Computer Systems

June 1982

Approved for public release; distribution unlimited.

"••••• -

Preface

This report outlines an approach for developing an integrated system

of design tools for designers of complex digital systems. For the pur-

pose of the report the terms Computer-Aided Design (CAD) and Design

Automation (DA) are essentially synonomous and can be used inter-

changeably. I tend, however, to apply CAD more to specific tools and DA

to the overall topic.

I became interested in this area through the two Microprocessor

Design courses offered by the Air Force Institute of Technology. We

used several CAD programs in producing our design, and, while they were

very helpful in accomplishing the task, they were not particularly

user-friendly. The biggest limitation was that the simulation program

inputs (or outputs) could not be interfaced directly with the layout

program. In wanting to take advantage of the experience gained in those

courses, I decided to work on the concept of an integrated DA system.

I wish to acknowledge the tremendous assistance I received in this

effort from Major Al Ross and Major Hal Carter. As my advisor, Maj.

Ross inspired my interest in the subject and provided a direction for

the research. Maj. Carter became almost a co-advisor in helping refine

numerous aspects of the approach. The three of us spent many hours in

discussions which led to most of the concepts and approaches presented

in this report. I express my deep gratitude to both individuals for

their invaluable assistance.

Thanks also to Dr. Gary Lamont, my third thesis committee member,

for his efforts to help make this a worthwhile project. In addition, I

am indebted to Major Mike Borky who, as an instructor in Digital Compu-

ter Design, gave me an appreciation for logic-level design.

ii

----- «^

I dedicate this work to my family, who endured three and a half

years of part-time graduate study on top of my full-time Air Force job.

To Charlene and our children, Catherine and Barry, a loving thank you.

Bart Cable

iii

i

Contents

Page
Preface ... ii

List of Figures vi

Abstract viii

I. Introduction 1

Background 3
History 5
Levels of Abstraction 6

Evolution of the Model 9
CLODS 1Ü
Design Courses 10
Univ. of Conn 12
Lawrence Livermore 13
CMU-DA 14
Emergence of Super-CAD 15

Overview 18

II. Philosophy Behind Super-CAD 19

General Philosophy 20
Flexibility 20
User-Friendly 21
Executive 21
Interactive 22
Database 23
Conclusion 24

Philosophy Extensions 25
Process Blocks 25
Translation Between Blocks 28
Translating User Input 28
Testability 29

Important Questions 29
The Model 29
Languages 29
Hardware-Software 30
Process Blocks and Tools 30
Database 30
Artificial Intelligence 30

Summary 30

III. The Super-CAD Model 32

Introduction 32
Assumptions 33
Notation and Conventions 34
Example 35

The Model 35
Realization 37

At* - ~

iv

3.1 37
3.2 37

Implementation 49
2.1 49
2.2 74

Specification 77
Partitioning 79
Software Techniques 79
Systems Design Approach öl
1.1 «1
1.2 84

Model Conclusion 84
Comparison 8b
Summary 87

IV. Super-CAD and AFIT 89

Plan 89
Specific Projects 91
Recommendations 93
Summary 94

V. Conclusion 95

Recommendations 96
The Model 96
Tools 98
Other 100
Summary 1 u 1

Final Thoughts 102

Bibliography 103

Appendix: Compendium of Model Diagrams 114

VITA 139

List of Figures

Figure Page

1 Design Stages 4

2 Levels of Abstraction 6

3 Microprocessor Design Sequence of Operations 11

4 Trends in the Evolution of Super-CAD lb

5 Process Block 2b

b Overall Super-CAD Process 36

7 Main Design Stages 3b

8 Block 3 - Realization 38

9 Block 3.1 39

10 Block 3.2 40

11 Block 3.2.2 42

12 Block 3.2.3 45

13 Block 3.2.4 48

14 Block 2 - Implementation 50

15 Block 2.1 52

1(

22

23

Block 2.1.1 54

17 Block 2.1.1.1

18 Block 2.1.1.2

19 Block 2.1.2 .

20 Block 2.1.2.2

21 Block 2.1.2.3

Block 2.1.3 .

Block 2.1.3.2

24 Block 2.1.3.3

55

58

b2

b4

b5

b7

b8

b9

25 Block 2.1.3.4 70

vi

„-. m — • * —« . — *j

2b Block 2.1.4 73

27 Block 2.2 75

28 Block 1 - Specification 82

29 Block i.l 83

30 Block 1.2 «5

31 AFIT Design Automation Research and Development Tasks 92

vii

— - - i - . ^••dM td

AFIT/GCS/EE/Ö2J-7

Abstract

This project proposes a structure to integrate a variety of

Computer-Aided Design tools into a complete design system. Design aids

have provided valuable assistance to designers of integrated circuits

over the last decade. However, greatly increased circuit complexity,

with the approach of more than a million devices on a single chip, is

exceeding the capabilities of current design methods. Greater automa-

tion and additional design tools are needed.

A model is proposed which divides the design process into three

stages: Specification, Implementation, and Realization. The Implemen-

tation stage is examined in detail. Design requirements can be descri-

bed at different levels of abstraction, from a description of overall

behavior to specific gate-level logic details. The model attempts to

satisfy the requirements at the higher levels using existing implementa-

tions before resorting to the design of new circuits at the lowest

level.

The proposed system is an integral part of the Air Force Institute

of Technology's increased emphasis on Design Automation. As future

efforts address more of the details and problem areas, design tools will

be developed to support it. The system will be highly flexible, based

on a great degree of interaction with the user, and adaptable to chan-

ging technologies and requirements.

viii

SUPER-CAD: AN INTEGRATED STRUCTURE KÜR DESIGN AUTOMATION

1. Introduction

In the last few years, developments in microelectronics technology

have accelerated rapidly, and the era of VLSI and VHSIC (Very Large

Scale and Very High Speed Integrated Circuits) has begun. These advanced

chips have the potential to contain "hundreds of thousands of tran-

sistors" (Refs 1:34 and 68). As Integrated Circuit (IC) chips have

increased in complexity, the difficulties in design have also increased

for IC designers. As a result, the field of Computer-Aided Design (CAD)

has evolved to assist the designer with many of the "routine and often

mundane" tasks such as "bookkeeping and consistency checking" in keeping

crack of the basic elements of the design (Ref 2:48). With such help,

designers have been able to keep up with the rapid advances in IC tech-

nology. Yet, much of the design process is still a manual operation

with the designer creating the specific circuit design himself at the

logic gate level. He then uses CAD tools to do automated testing and

simulations with his circuitry and produce final layouts for IC and cir-

cuit board fabrication.

In the VLSI era, as designs are becoming very complex, current CAD

tools are no longer adequate. In fact, some observers feel that design

tools could become the constraining factor that limits the growth of IC

complexity (Refs 3:3 and 72:94-95). Thus, Computer-Aided Design has

become a "critical technology" that requires significant enhancement to

meet the n'.eds of VLSI in the 80's (Ref 4:3).

Many research efforts are underway to provide that enhancement.

I

This report summarizes much of the recent work and offers an approach to

join old and new CAD tools into a single design system. This "Super-

CAD" would allow a designer to input his requirements and work interac-

tively with the system to produce a finished design ready for fabrica-

tion. Definition of the system has two aims. First, the system should

integrate all steps of the design process into a single package.

Second, it should emphasize designs that use families of existing 1C

chips. While the Super-CAD system will be capable of designing new,

customized circuits, it will attempt to solve the problem with available

IC's first. This is becoming increasingly important as designs become

more sophisticated. With VLSI promising tremendous flexibility and

power, existing VLSI circuits may, in many cases, produce more economi-

cal designs than would the creation of whole new circuits.

This report will approach the subject in the following manner:

1. Present a general view of the problem, meant partially as a

tutorial on Computer-Aided Design and Design Automation to establish a

backgound for the research effort.

1. Demonstrate the need for an integrated system to support automa-

ted design.

3. Define a framework for integrating design tools into a sinple

structure for digital design in the VLSI era.

4. Propose a model for developing an important part of the struc-

ture.

5. Show its relationship to current and future work of the Air Force

Institute of Technology and the Air Force.

6. Identify those areas that either require further development or

could benefit from future research.

— - - - • - • -— - - - II —1M1 I • •— - - - •../.. Ll

The supporting references provide a compilation of much of the work

that has been done on Design Automation over the last ten years. While

this report only touches lightly on many of the sources, the bibliogra-

phy is quite extensive and provides an excellent summary of current

activity. In turn, the references listed within these sources can pro-

vide further information. In addition to the references specifically

cited in the report, the bibliography contains others that also relate

to Design Automation and Computer-Aided Design.

Background

The designers of digital circuitry go through a number of phases

when they transform the statement of a problem into a completed design.

One model of this process might divide it into three distinct stages.

In the first stage, the designers analyze the problem to define the

requirements and arrive at a set of specifications. During the next

stage they might attempt to meet those specifications with currently

available circuits. If some or all of the requirements cannot be met,

they must design new circuits. Then they run simulations to test their

designs. Finally, in the third stage, they develop a layout of their

circuitry and produce a mask set for fabrication of the IC's and/or cir-

cuit boards. These three stages of development can be called Specifica-

tion, Implementation, and Realization (Ref 13:1322). (See Figure 1.)

Design Automation (DA) (including the tools of Computer-Aided Design)

assists the designer at various points throughout these stages.

DA can be defined as "the art of utilizing digital computers to help

generate, check, and record the data and the documents that constitute

the design of a digital system" (Ref 5:2). It relieves the designers of

repetitive manual tasks, reducing time and costs, and allowing them to

i

. K*

Requirement

SPECIFICATION

Behavioral Specification

IMPLEMENTATION

Detailed Design

REALIZATION

Completed Design

Fig 1. Design Stages (Ref 13:1322)

devote more attention to design problems (Refs 5:2 and 6:100). A study

has shown that, for "aspects of the design that have been automated,

design time is significantly reduced" (Ref 51:67).

As integrated circuit technology has evolved, development of design

aids supporting DA has been largely uncoordinated, with specific systems

produced to address specific problem areas or technologies. As a

result, a myriad of CAD systems have been developed in recent years (Ref

7:1189). But we are now on the verge of "VLSI systems of enormous func-

tional power" (Ref 8:137)*. With the potential for over a million

*This referenced book by Mead and Conway appears to be the definitive
text on VLSI electronics. Virtually every entry in the bibliography
from the last three years has cited it.)

devices on a single chip (Ref 9:617), it has become increasingly impor-

tant to "replace the quagmire of standalone [CADJ applications"

(.Ret 10:126) with integrated DA systems "oriented around a common data

b^se" (Ref 14:550) and "dedicated to the problems of 1C designers in the

VLSI era" (Ref 11:552).

History. (Refs 7:1189-1190,1197,1190 and 6:89,100) The history of

design automation shows a gradual development of design tools starting

in the late 1950's. "Typical applications were automated logic dia-

gramming, [computer] back-panel wiring with discrete wires, and elec-

trical load checking" in 1958 and 1959 (Ref 6:89,100). The 1960's

brought printed circuit boards (PCB's) and the use of a large number of

solid state components. Design aids at that time focused mainly on cir-

cuit analysis and simulation techniques for discrete circuits. Examples

are NET-1—1964, CIRCUS—1967, and TRAC—1969. Then integrated circuits

arrived, and by the early 70's the use of computers became indispensible

as record-keeping tools and means of verifying the design before a chip

was manufactured. IC simulators of that time included BIAS-3—1970;

CANCER, SLIC, and TIME—1971; ASTAP—1973; and SPICE2—1975. By the

middle 70's tools were developed to automatically generate the physical

layout and interconnections of the components within an IC, for example,

CRITIC in 1974.

At this point it became obvious that "computer-aids were a necessity

in the design of complex IC's, both for physical and for functional

design and verification" (Ref 7:1190). Gradually, whole systems of

loosely-coupled CAD programs have come into being, and CAD techniques

have also been applied to the design of complex PCB's. But these pro-

grams are largely incompatible with each other. They frequently use a

> m mt

variety of data formats and often require "manual intervention I by the

designer] to move from one program to another." The only true integra-

ted DA systems currently in existence are for some "highly specialized

design approaches" (Ref 7:i189-1190). Now that the use of complex and

sophisticated IC's is becoming more widespread, the development of a

truly integrated system of design tools is becoming a necessity.

Levels of Abstraction. As electronic circuitry evolved into more

complex designs, different ways to represent those designs produced

hierarchical levels of ostraction (Ref 7:1190). While a number of dif-

ferent levels exist, most of them can be arranged in three general

levels. Different authors describe these levels of representation

somewhat differently (Refs 7, 12, 13). The Thomas approach was chosen

for the project because it provides the best overall definition that is

consistent with the Super-CAD research (Ref 12:1201). Note that these

levels are distinct and separate from the three design stages. The

levels of abstraction are ways to look at a design primarily within the

Implementation stage while the design is being created, as shown below.

Thomas describes the three levels as Behavioral, Functional, and

Logical (or Physical) (Ref 12:1201). (Figure 2.) Each level of

abstraction deals only with information applicable to that level; it is

BEHAVIORAL LEVEL
Conceptual definition.

FUNCTIONAL LEVEL
Operational definition; register transfers.

LOGICAL LEVEL
Primitive logic elements.

Fig 2. Levels of Abstraction (Ref 12:1201-1202)

-••••• •

.*__ .oV « _^~ ^ , . • .. _ ...j. t^i„

not concerned with lower levels of detail (Ref 13:1323). The highest

Behavior Level provides a "clear conceptual" definition of a digital

design. This level does not consider the structure of how system func-

tions are implemented. Rather, it specifies the overall behavior of the

system (e.g., inputs and outputs). (Ref 12:1202)

The Functional Level, on the other hand, begins to deal with some of

the specifics of the design. It generally defines operations or func-

tions to be performed (Ref 12:1202) at the register-transfer level. It

provides a framework, for interpretation of "a sequence of instructions"

to cause "action upon a data structure" (Ref 13:1324). Details "of the

actual implementation" are still hidden, however. Those are left to the

Logical level, which "specifies the interconnection of primitive logic

elements." The primitive elements can be logic components, like gates

or flip-flops, or larger modules composed of the basic logic components.

(Refs 12:1201 and 13:1323)

Thomas provides an example of the differences between levels. Sup-

pose the digital system is to perform the operation "A=B+C". The

Behavioral level only views it as "A:=B+C" (":=" means "replaced by")

where a new value A is generated from values of B and C. The Functional

level may see it as requiring three registers and an adder. The adder

takes the values of B and C from the first two registers and places

their sum in the third register. The Logical level of the design may

actually include a large number of registers and more than one adder, so

that the operation could be performed by any one of several combinations

of these components. The "boundary" between the Functional and Logical

levels may at times be "fuzzy", but the distinction is still between

specifying an operation and actually implementing it. (Ref 12:1202-1203)

As a further example, consider a requirement to design the digital

circuitry for a simple, four-function calculator. From the Behavioral

standpoint the requirement can be described as needing to support the

four basic operations of addition, subtraction, multiplication, and

division, plus a few extra parameters such as the number of digits and

whether chain operations are to be included. The four operations can be

expressed in the same "A:=B+C" form as above for addition. A Functional

level description, on the other hand, would define the necessary reg-

isters and functional blocks to perform the operations. One block

could represent each operation: adder, subtractor, multiplier, and

divider. Also included at this level would be how the chain operations

are to be performed; for instance, each operation might have to be com-

pleted (pressing the "=" button) before the next one can be joined to

it.

Finally, at the Logical level details of the actual implementation

(or possible implementations) are defined. It is here that the dif-

ferent possibilities for accomplishing the four operations are ex-

pressed. For example, the functional blocks could actually be implemen-

ted with true hardware modules, such as a multiplier to do multiplica-

tion. Or, especially for a simple calculator, all four operations could

be handled by some form of addition (see Ref 130, Chap. 3) so that only

an adder and the necess?ry registers and counters might be used.

Siewiorek describes a "circuit level" below the logical, made up of

transisters, capacitors, and the like (Ref 13:1323). but, as we shall

see, many CAD cools currently support the logical level so the designer

need not be concerned with the specific elements at the circuit level

(Ref 25: Part I, 4).

-'- - • ^ . ^. «,

The design level hierarchy just described provides a mechanism to

help simplify the task, of the designers, by being able to express the

requirements of the design at a higher level of abstraction, they can

leave management of the details to the computer (Refs 7:1197; 16:85; and

17:67). This again saves time and money in the design process (Ref

15:314). Research indicates that such high-level representation can be

successful. Studies at Carnegie-Mellon University (CMU) have shown

"that by increasing the level of abstraction of the basic building

blocks of the design hierarchy . . . , a much improved IIC layoutJ can

be produced" (Ref 16:89).

Evolution of the Model

Up to this point, in the evolution of integrated circuit technology

and design automation tools, two representations have been described.

On the one hand, stages of digital design divide the design process into

three areas. On the other, the three levels of abstraction provide dif-

ferent degrees of detail concerning design requirements and implementa-

tions. The previous example of an electronic calculator illustrated the

levels of abstraction. Extending that example to the design stages, the

Specification stage takes the requirements and parameters for the calcu-

lator and turns them into a set of specifications. The Implementation

stage produces a design from those specifications, operating at one or

more of the levels of abstraction. Then, in Realization the design is

used to create a layout for the actual digital hardware for the calcula-

tor.

Thus, the two representations are not equivalent. They do, however,

produce some interesting patterns in the evolution of DA tools and

models. First, they highlight a gradual shift from "design of" new

••-• —~ -*-

—

IC's, which relies on basic gate-level building olocks, to "design with"

existing IC's, where the IC's themselves are the building blocks. They

also show an increasing trend toward integrated DA systems. Several

examples represent steps in this evolution and demonstrate how it has

led tc Super-CAD.

CLODS. In the early 1970's several projects here at the Air Force

Institute of Technology (AFIT) went together to support CLODS, the Com-

puterized Logic-Oriented Design System. (.See Refs 18, 19, 20, 21, 22,

23, and 24.) CLODS viewed digital design as a six-step process: t, I)

"reduction of a higher-order language" (DDL*) to "state tables and

Boolean equations", (2.) "state table minimization", (3) "state as-

signment", (4) "logic hardware realization", (.5) "logic diagram documen-

tation", and (6) "logic circuit simulation" (Ref 24:1-4). Separate pro-

grams had been developed for each of these steps, and CLODS drew them

together into a compatible system. The system used libraries in secon-

dary memory to store these programs so that only the "currently execu-

ting" modules inhabited main memory (Ref 24:16). An additional project

produced an extension to CLODS to automate the "design of integrated

circuit masks" (Ref 19:ii). Thus CLODS dealt with the Implementation

and Realization stages of design at the Logical and Functional levels of

abstraction and integrated several CAD tools.

Design Courses. The Microprocessor Design courses here at AFIT

, currently use the DEC-10 computer of the Avionics Laboratory and several

, CAD programs (Ref 25). Figure 3 shows the different phases. Students

work up their designs manually at the logic gate level. They then enter

*Digital Design Language—a register-transfer language ueveloped by
Dietmeyer (Ref 66).

10

•••» --•• •— • - -

1 9 >'

MANUAL

LOGIC DESIGN

CONVRT

FORMATTING

2 i ' 10 >'

CODE TOR

LOGIC k

MP2DV4

FORMATTING

3 ' <* ' 6 11 if

LOGIC k

SIMULATIONS

(I)
MODIPT TOR

SCOAP

(X)

MODIFT FOR

CONVRT

MP2D

PLACEMENT

AND ROUTING

5 f ? 1 r

V

12 V

SCOAP

TESTABHJTT

ANALYSIS

LOGIC 4 RUNS

FOR CONVRT

APPLICON

GRAPHICS

8 ' 1" ' r
(X)

TRANSUTE
FOR CONVRT

(IA2CVT)

ZYNETICS

PLOTTER

(X) - Manual Translation Step

FIG 3. Microprocessor Design Sequence of Operations (Ref 25)

11

i »III!-fa

them into a program called Logic 4, which runs simulations to test con-

tinuity and timing (Ref 26). The Logic A representation can also be

used, with minor modification, by a SCOAP program to "efficiently and

automatically characterize the testability" of the design (kefs 29:3 and

30). Once a design is finalized, it is run through CUNVRT and MP2DV4

programs to format it for the layout program (kef 27). The MP2D program

accomplishes placement of the basic IC components and routing of the

connections between them (Ref 2b). The result is a grapnical represen-

tation which can be interfaced to an Applicon interactive-graphics ter-

minal and/or sent to a Zynetics Flatbed Plotter. The final layout can

also be used to develop a set of masks for IC fabrication. (kef 25)

This whole process, then, operates within the Implementation and keal-

ization stages and uses CAD building blocks at the Logical level,

(kefer to Chapter II, Translation Between Blocks, for additional discus-

sion.)

Univ. of Conn. A project at the University of Connecticut has re-

placed the standard gate-level building block library with a library

made up of the Intel 3000 family of bit-slice microprocessors. The

object is to allow "the designer to operate at a high level of I abstrac-

tion] in the design process." Thus he can express his design needs at

the Functional level and leave the "device details" to be "handled by

the automated design system". This system operates essentially in the

Implementation design stage, although the users do slip into the keal-

ization stage when they develop a hardware prototype of their designs

for further testing. (Ref 31:20-22) A limitation of the system is that

it can only produce designs that use combinations of the 3000 series

chips, but it is a step in the right direction.

12

—*•

Lawrence Livermore. A further step is the work of Matelan and Ross

for the Lawrence Livermore Laboratory (.LLL). (Refs 32, 50, 33, 34, and

35) Matelan considered the problem of automating more of the design

functions in developing dedicated real-time control systems. He pro-

posed a unique Control System Design Language (CSDL) by which a designer

could specify a problem. He sought to simplify the problem specifica-

tion step and automate hardware selection and software production. An

important element was to remove all hardware considerations from the

problem definition, allowing hardware components to be selected at dif-

ferent stages as the design evolves. At the same time the necessary

software can be developed, aiming for as much concurrent

hardware/software development as possible. (Refs 32:1-19; 50:462-463;

and 33:25)

Ross extended Matelan1s work by focusing on the automation of

hardware selection. He proposed a systematic automated design process.

Once the designer generates a problem statement in a high level program-

ming language, the computer goes through several development stages to

approach the problem. The key element is a library of pre-designed

realizations and supporting technologies. The problem statement is

specified, tested, and translated into an intermediate form before the

hardware realization technology is considered. Ensuing steps choose and

test a microprocessor family and produce the necessary software. The

designer thus exercises creativity in specifying the problem statement,

and the computer completes the remaining design steps. (Ref 34:1-8 and

35:227)

This work has advanced design automation significantly and is a

basis upon which Super-CAD is built. It operates within both

13

- - - ••* • - • —— - - -—— • ' -••>—•'j»-« — *•*

Implementation and Specification stages at the Behavioral and Functional

levels, through a highly integrated system.

CMU-DA. The last few years have seen a major undertaking in DA by

Carnegie-Mellon University. (Refs 36, 38, 44, 42, 16, 2, 4y, 43, J7,

45, 48, and 47) The CMU-DA system is "an approach to translating high

level behavioral design descriptions into detailed designs at the logic

description level" (Refs 44:479 and 42:1052). The project's goal is "to

provide a structured design tool" which is "responsive to changing tech-

nology" and helpful to designers in exploring different alternatives for

implementing a design (Ref 36:93). Inputs to the system include a

behavioral description of the problem in ISP (the Instruction Set Pro-

cessor hardware description language; see Refs 39, 40, 41, and 16), plus

paramenters of the design ("optimization criteria") and a library of the

"hardware components available to the design system" (Refs 36:93; 3b:73;

and 16:86). (Note: What the CMU researchers are calling a "behavioral

description" is really a blending of the Behavioral and Functional

levels of this project, with many elements from register-transfer theory

at the lower level. The "Behavioral level" of the Super-CAD project is

meant as a true description of overall behavior, quite separate from

register-transfer level considerations.)

The input of a behavioral specification, while "characterizing the

[desiredJ input/output behavior", does not necessarily dictate the

implementation's "internal structure." As the design proceeds through

the CMU-DA system, binding implementation decisions are made "in a top-

down manner." As each level is traversed, "more and more structural

detail is frozen", with the "most influential" design decisions being

made first, "to cut down the design search space." The result is a

14

. . ^«.^ -,~^.

"complete hardware specification" expressed "in terms or the basic buil-

ding blocks" used in the design. (Rpfs 36:93; 38:73; 16:05; 43:b35; and

2:50)

The design system is made up of a number of components (see Kef 3b),

and research is continuing toward completing them all. An important

aspect of the system is that different "design styles" may be used

(e.g., microprocessors, TTL chips, standard logic cells, etc.) as well

as different technologies (e.g., TTL versus CMOS). Flexibility is as-

sured by the module set library, which allows new modules to be added as

new VLSI circuits and technologies become available. The system ultimate-

ly maps operations derived from the behavioral description to nodules

from the library based on the design style and technology chosen. (Refs

2:49-50; 36:94; 17:68-69; 44:479; and 7:1197)

The CMU system is another important advancement in integrated design

automation. It will automate portions of both the Implementation and

Realization stages of design, and is based upon a specification ex-

pressed in the ISP language which operates at the Behavioral and Func-

tional levels.

Emergence of Super-CAD. The evolution-through-example just described

shows some definite trends. These trends are summarized in Figure

4. (Recall from earlier in the chapter that the three stages and three

levels are not equivalent.) The early CLODS work, and current CAD pro-

grams (exemplified by Logic 4-to-MP2D), deal strictly in the design of_

new circuits and/or boards. While they affect automation at both the

Implementation and Realization stages of design, they operate solely at

the Logical level of abstraction. The University of Connecticut project

with the Intel 3000 family, though limited, concentrates on automating

15

•--—••" '• • •'•^*- '-• • --- - - -- i i -

DESIGN BLOCKS

SPECIFICATION

IMPLEMENTATION

REALIZATION

-SUPER-CAD-
design ax * with

-CMU-DA-
design Q£ 4 with

-LLL-

(* »

design with

-U. OF CONN.-
design with

L-L0O-IOWMP2D-I
design of

CLODS-
design of

ABSTRACTION

BEHAVIORAL

FUNCTIONAL

LOGICAL

L J

Automation Input

Degree of Automation Input Levels INTE-
SPEC IMPL. REAL. BEH. FUNC LOG. OF WITH G RATION

CLODS

L0GIC4/MP2D

Ü. OF CONN.

LLL

CMU-DA

SUPER-CAD XX

XX

XX

XX

XX

XX

XX

XX

XX

X

XX

XX

X

X

XX

XXX XXX

XXX XXX

XX X XXX

XX XXX

XX XX XX

XX XX XX XX

XX

XX

XXX

XXX

xxxx

X - Slight
Scale: XX - Average

XXX - Almost Total

(NOTE: These are example systems only.)

FIG 4. Trends in the Evolution of Super-CAD

16

I IHK 1 Ill !••«• *_ . ^-. _ - - --- '•-

Che Implementation stage predominately at the Functional level, and

seeks a design with existing circuits. The Lawrence Livennore work

climbs higher by designing with more than one family of microprocessors

and begins to address problems in the Specification stage and the

Behavioral level. The emphasis, however, is still on automated

Implementation and Functional descriptions. The CMU-DA project, on the

other hand, combines Behavioral and Functional level specifications and

covers both design ^f_ and with. It does not attempt to automate any of

the Specification stage.

With the trends viewed in this manner, it is a logical extension to

attempt to automate all three stages in the digital design process and

to address a problem at all three levels of abstraction. Super-CAD is

intended to provide that capability and flexibility. Thus, as shown in

Figure 4, Super-CAD will automate as much of the Specification,

Implementation, and Realization stages as possible. Automation of por-

tions of the Specification stage will allow the designer to input re-

quirements in a simpler form than a complex hardware description lan-

guage. Also, Super-CAD will operate at all three levels of abstraction,

not just the Behavioral level. It will first attempt to complete a

design at the Behavioral level with existing circuits. If unsuccessful,

it will try the same thing at the Functional level. If that is also

unsuccessful, it will move to the Logical level, attempt to finish the

design with available IC's, and produce new circuits for any remaining

parts of the specification. Therefore, Super-CAD makes a strong effort

to satisfy all or part of the requirements with existing IC's before

resorting to the design of new ones.

17

- • -- . ~ - — — • - - -- —'-

Overview

The structure of Super-CAD is based upon the design stages of Figure

1. This report defines the structure in detail, analyzing these major

stages in reverse order. Since the Realization stage is currently the

most highly automated (Ref 51:60-61), the part of the Super-CAD model

which draws the automated tools together is described first, including a

few examples of applicable tools—both those in existence now and those

that need to be defined. Next, a detailed model is proposed for automa-

ting the Implementation stage. This is an extensive part of the project

and will include many DA tools that require development. Finally, the

Specification block is examined. Since many important decisions are

made during this stage, it is the hardest to automate and requires the

greatest future efforts.

Chapter II presents the overall philosophy of Super-CAD, explaining

the general concepts of what the system should do. Then Chapter III

describes the Super-CAD model in the sequence given above. Chapter IV

ties Super-CAD in with the work in design automation being conducted

here at AFIT. Chapter V concludes the report by summarizing the model

and highlighting the many areas where future research is needed to help

the model become a reality.

18

II. Philosophy Behind Super-CAD

Initial research into design automation for this project revealed

that a wide variety of CAD programs are available. Most of them address

specific areas in DA and generally are not compatible with one another.

In the midst of this diversity, however, is a common basis for assisting

the digital designer with routine, repetitive tasks. Their use has sup-

ported the development of more complex and sophisticated designs. But

with the dawning of the VLSI/VHSIC era, it has become apparent that the

development of CAD tools needs to be directed into a more coordinated

effort, and integrated systems that automate virtually every phase of

digital design should be developed. Super-CAD is meant to focus atten-

tion on these needs and provide a framework within which they can be

satisfied. It defines an integrated structure that is highly user-

friendly and flexible, allowing a designer to input a simplified
i

description of requirements and interact with the system to produce a

design. Or, he may choose to use only a portion of the facilities

available in Super-CAD; for example, to run simulations on a small cir-

cuit already designed.

This chapter presents the overall approach to Super-CAD—some of the

thoughts behind arriving at an all-encompassing system for design au-

tomation. After many of these thoughts were organized, a pertinent

paper by Daniel and Gwyn was discovered which describes work being done
I

at Sandia National Laboratories (Ref 52). It turns out that their ap-
i

proach agrees with many of the areas presented in this chapter, inclu-

ding the use of an overall "Executive" program and supporting a variety

of existing IC families and technologies.

19

•Wk

General Philosophy

Super-CAD will represent an integrated systam of tools, ultimately

automating portions of all phases of digital design, from inputting a

set of requirements to producing a mask set for hardware fabrication,

including the software and/or firmware to operate it. The goal is to

allow the designer to input a relatively simple description of the prob-

lem without having to break it down manually into many details, such as

those required by a complex hardware development language. The eventual

Super-CAD configuration should come as close as possible to producing a

final design completely automatically, once it receives that simplified

input. Even if such a configuration is attained, however, Super-CAD

must still be a highly interactive, flexible collection of design

tools—a "toolbox"—that aids the user in any chosen phase of design.

Flexibility. It is imperative that the structure of Super-CAD be

flexible, as follows. Its actual development will be in stages, with

individual modules or blocks being completed relatively independently.

The system should allow these tools to be used separately, once they are

available. Translation programs may have to be used between tools,

although the aim must be for as much standardization as possible so that

modules can be interfaced easily.

An early function of Super-CAD will be to draw together many of the

CAD tools currently in existence. For instance, the Logic 4/C0NVRT/MP2D

set of programs described in Chapter I can be incorporated into the sys-

tem and used separately until interface programs are developed. After

such tools are interfaced directly into Super-CAD, they can be modified

and expanded to include a greater number of design building blocks and

technologies.

•>o

— wU

The key to Super-CAD's flexibility, then, will be a dynamic approacn

to developing it in stages, adding new tools as they become available,

and replacing or modifying old ones as necessary. Included in this

should be the ability to recover from mistakes or unrealizable direc-

tions. Since Super-CAD will be an amalgam of many modules and subsys-

tems, when one is found to be unproductive or incorrect, it can be re-

moved and replaced without affecting the whole system.

User-Friendly. Super-CAD must be appealing to users from the very

beginning. As development commences on individual tools, these must be

straightforward and easy to use. The design community will be very

suspicious of such an all-encompassing system as Super-CAD promises to

be. But its early stages should help to lessen such suspicion by

presenting a system of tools that designers can benefit from. The tools

should be in terms the designers are familiar with; Super-CAD should

speak their language. As more of the system is filled in, more users

should find it helpful. If they are satisfied with what tney have been

using, they may want to try the new portions. The aim in the short term

is to make the system useful for a variety of designers. In the long

term, familiarity with the system should allow them to rely on it more

and more, so that ultimately it can assume most of the design

functions—though still under their control, if they so choose.

So, while Super-CAD will evolve into a high level system automating

the majority of the design steps, it should always retain the "toolbox"

flavor with the ability to assist designers at any level.

Executive. A feature that will make this possible is the use of an

Executive—a master program to control all the toolbox programs and,

most importantly, interface with the user. It is the Executive that

21

 • ••• -•- -

will welcome users onto the system and offer them a list of options Ca

menu) for use of the system. In the early stages of Super-CAD, the Exec-

utive will provide access to the available tools, but the user may have

to manually translate from one block to another. As the system

develops, the Executive will take over these chores and provide the

translation automatically. At first, such translation between tools may

be rather unwieldy. But this will be overcome as the system grows more

sophisticated. Old tools can be replaced by new programs that do not

require translation; they will interface directly with other modules.

An important function for the Executive is to keep the designer

informed of how the design is progressing. At any time the designer

should be able to find out which Super-CAD module is currently working

on the design. This assumes that major portions of the design are being

done by the system in an automatic mode. Equally as important, however,

would be an interactive mode.

Interactive. In the discussion above it is obvious that, to be

effective, Super-CAD must be highly interactive. The designer and the

computer must communicate directly with each other. As Waxman says,

this is a "key ingredient" to the "design environment" (Ref 53:54b).

Many design problems will require that the computer draw the user into

critical portions of the design process, such as during the development

of a set of specifications.

When the problem is first entered, the Executive can help the user

properly format the data. It can provide specific "prompts" for what

"is required next" (Ref 54:347). When the user needs more information,

the Executive should provide a "HELP" file for any necessary assistance

(Ref 54:348). As the design progresses, the interactive environment

22

——.

will allow the designer to help the computer solve specific design prob-

lems, for example, timing considerations. This may force the designer

to think through the problem further and possibly modify some of the

input parameters. Or, when the user is monitoring the output of an

automatic part of the design operations and detects an error, he can

"stop the computation" and attempt to correct the problem before proces-

sing continues (Ref 55:135b).

With this highly interactive environment and the many functions

included in Super-CAD, sophisticated graphics terminals will be a neces-

sity. Besides providing for various kinds of data entry (Ref 5b:109),

they will support interactive design modification and layout checking in

the Realization stage. Examples of such systems are APPLICUN and CALMA

(Ref 57:1285). Also, a Graphics Work Station is being designed at AflT

(Ref 58), and it will support Super-CAD.

Database. Another feature that is essential to the sophistication

and flexibility of Super-CAD is an effective database system. It is a

crucial element in maintaining the vast libraries of design buildin?

blocks, from families of integrated circuits to basic gate-level

elements in various IC technologies. It can contain previous problem

solutions which might be useful in future applications. It can also

store new building blocks, or "macros", developed by current users for

later use, and keep track of current designs in various stages of com-

pletion (Ref 6:90-91).

The need for a common database in an integrated DA system like

Super-CAD has been widely proclaimed. (See Refs 59, 54, 14, t>0, 61, 62,

and 63.) Such a database "integrates, organizes, and controls" (Ref

60:285) great amounts of "design data" (Ref 63:399) throughout the

23

— _

growth of a design in such a system (Refs 62:394 and 64:1U4). From the

standpoint of Super-CAD users, the "'actual' structure" of the database

is not important as long as the "'implied' structure" is easy to use

(Ref 54:337). Also, the flexibility of Super-CAD dictates that the

database "allow new elements to be added without disruption ... as

technology evolves" (Ref 6:93). (.Comprehensive discussions of design

automation databases can be found in Losleben, Ref 54, and Eastman, Ref

59.) A database that can support Super-CAD is currently under design at

AFIT (Ref 65).

Conclusion. The general philosophy of Super-CAD promotes a system

of great flexibility and usefulness, supported by interactive graphics

terminals, a dynamic Executive, and a comprehensive database. It will

offer many aids to the digital designer and allow him to use any tool or

group of tools interactively or automatically. It can serve as pad-

and-pencil for the designer to work, up his design at the logical level,

or provide a library of possible implementations at functional and

behavioral levels.

For example, suppose someone needs an analog-to-digital converter.

The ultimate Super-CAD configuration will permit him to input that re-

quirement in one simple statement, such as "A/D Converter." Super-CAD

would respond by asking for the desired parameters for the component or

by offering a selection of components and their specifications. Through

this interactive process the user can select his converter from those

available and receive a printout with the interconnections and instruc-

tions for use. This operation can thus replace the process of manually

looking through all the data books to find the right component. Another

case might be where a user inputs a set of requirements in a high level

24

language and interacts with the system to receive as output a wiring

list and selected IC's to do the job, plus the binary code for ROM

chips—or even a full PCB design.

As the system is developed in stages and users come to rely on the

tools it offers, it will have a greater chance for acceptance at tne

higher levels as a total design package. Its continued acceptance will

be supported by its adaptability to advancing technology and the acces-

sibility of its tools at the lower levels.

Philosophy Extensions

In preparation for the next chapter's discussion of the Super-CAD

model, this section offers some intermediate details as an extension to

the general philosophy.

Process Blocks. As will be presented in Chapter III, the Super-CAD

model is developed using the top-down design methodology, to provide

greater detail with each succeeding step. A representation used in the

model is the process block of Figure 5(a). As shown, it can represent

the whole Super-CAD system. A set of requirements is the input, and a

completed design is the output. It can also be a representation of the

individual modules at all levels in the model. Applying the concept of

functional decomposition (in the software sense), each block can be

expanded internally, providing more detail at the next lower level.

Each such process is defined by the data that is available at the input

and the data that is desired at the output.

Figure 5(b) gives a more detailed view of the process block. Again,

it may represent either the highest level of the system or any one of

the lower level blocks. In some cases at the lower levels, parts of the

diagram may not apply or might have to be modified; e.g., placement-

25

—•

Input

User
Interaction -s-

Input

Database -4-
(including
Libraries)

Output

> PROCESS >

(a) Overall Process Block

PROCESS

Synthesis

Analysis

7

Hardware
^ SqYirgnraent

• nodules
• interconnections
•system support

Software
 •• • functions

•dataflow
i «support

'"i i
i i

! Y
I Tests
Y
Documentation

(b) Process Block Detail

FIG 5. Process Block

26

—-

and-routing processes apply only to hardware.

That example highlights two important points. First of all, the

process block really represents design automation tools or sets of

tools. This is true at all levels of the model. At the top, Super-CAU

itself is a tool that produces a completed design. Near the bottom, the

placement-and-routing process is a tool that produces a layout for an

integrated circuit or printed circuit board. Secondly, a process block

may contain more than one module at the next lower level. For instance,

at certain points in the model hardware and software outputs will split.

They may conduct some functions in parallel (.such as simulation and tes-

ting) but others independently (e.g., placement-and-routing).

Referring again to Figure 5(b), and assuming it applies to any module

in the model, the "Input" arrow depends upon what the block is inter-

faced to, such as the output from a previous block. The "Database" is

as described earlier in this chapter, with libraries of existing cir-

cuits, previous designs, and current designs-in-progress. "User Inter-

action" was also explained previously. The outputs on the right may be

absent, or present in various forms, as you proceed through the model.

In many cases they will be lumped together in intermediate stages of the

design before they are broken out separately.

As mentioned earlier, the inside of the process block depends upon

the available inputs and desired outputs. In many instances the process

may be thought of as "Synthesis" and/or "Analysis". The synthesis por-

tion creates or produces, and the analysis portion tests or examines.

Thus, in the Super-CAD model, a process block could merely be a decision

point where an input is tested to determine which module to activate

next.

27

 *- .. . _. _«.. •..._.

Translation between Blocks. (Kefs 25, 2b, 27, and 26) Returning to

the earlier discussion of how Super-CAD will initially incorporate such

tools as Logic 4 and MP2D, this process should be examined in more de-

tail. (See Figure 3.) Actual use of these CAD tools requires many

translations to get from an initial gate-level logic design to a final

IC layout. First of all, the input to Logic 4 to run circuit simula-

tions will not produce an output that can be used by the next program,

CONVRT. Instead, a modified input has to be run through Logic 4, which

results in an output full of "warning" messages. That output is then

run through a locally-produced program, L42CVT, to strip away the war-

nings and format the whole thing for CONVRT. The alternative is to

manually create a new file of the circuitry in the proper CONVRT

format—more straightforward perhaps, but much more work. Even tnen the

design still must go through two formatting programs, CONVRT and MP2DV4,

before it can be accepted by MP2D for layout. Thus, only five of the 13

blocks are actual productive processes: 1, 3, 5, 11, and 13. The rest

are either input processes, manual translations, or formatting

programs—each requiring direct action from the user.

Super-CAD will help designers to overcome such problems. In this

instance it would provide automatic translation. If the user inputs a

logic design, Super-CAD can format it for simulation and, upon suc-

cessful completion, format it for CONVRT—all automatically. This is

but one example of how the Super-CAD system will remove more of the

drudgery currently facing digital designers.

Translating User Input. An extension to the above discussion in-

volves different input languages, while Super-CAD should ultimately be

best addressed through an easy-to-use, high level language, it can serve

28

i~_

many more users by accepting languages they are already comfortable

with. Much digital design work, is being done with Register-Transfer

Languages (RTL's) (Ret 66) (e.g., ISP used in the CML'-ÜA project). if a

user wishes to enter design requirements in an RTL, the Executive can

call a conversion program to translate that input tor the applicable

module.

Testability. Digital design using VLSI circuits should consider the

issue of testability early in the design process. The time and costs

involved require that most chips work properly the first time. The

Super-CAD system, by emphasizing designs with available circuits, must

assure that testaoility is included when different modules and circuits

are interfaced togetner. Self-test capabilities should be made a part

of the design as much as possible. Throughout the development of

Super-CAD, then, testability should be strongly considered early in the

design phases and at all levels of abstraction.

Important Questions

The above discussions on the general philosophy and some of the

details involved in Super-CAD lead to questions that should be con-

sidered as the model is examined in the next chapter.

The Model. A number of steps are required between entering design

requirements and producing a completed design based on a combination of

new and existing chips. What are these steps, and what tools and tech-

niques can help automate the ones done manually in the past?

Languages. An important consideration is the use of languages in

the system. Possibilities range from using a high order language (HOL)

at as many levels as possible, to describing design problems in a

hardware description language (HDL) or a register-transfer language

29

J

(RTL). Is one language enough? Perhaps the system can start with a

structured HDL, such as ISP, and evolve to simpler languages and higher

level descriptions.

Hardware-Software. Software development must be considered, and the

point at which software is separated from hardware can be important.

Where should this point be, and what problems can arise when it is a

fixed point? With the integration of hardware and software processes in

this model, some software tools and techniques might be adaptable to

hardware development. Also, Software Engineering techniques could pro-

vide effective tools for the system.

Process Blocks and Tools. In the expansion of the model, can the

process blocks be decomposed in alternate ways? Since each block may

contain a set of design tools, these should be able to work together and

also interface with tools in other blocks. Current CAD tools can be

integrated into the system along with newly defined ones.

Database. Can the system be database-dependent rather than

language-dependent, translating whatever language the designer wishes to

use into the form needed by the database system?

Artificial Intelligence. Artificial intelligence techniques will

become increasingly important in design automation (Ref 67). Can they

be used effectively in implementing one or more tools for Super-CAD?

These are just a few of the important areas to be examined in the

development of the Super-CAD model. Most are addressed in Chapter III.

Those that are not, plus additional questions that should be considered

in future work, are discussed in Chapter V.

Summary

Before proceeding to the actual model ii Chapter III, it is

30

• - - —<'•"

 „

important to sum up the Super-CAD philosophy as follows:

A project of the size of Super-CAD is larger than a single Master's

Thesis can hope to define adequately. Thus, this report adopts a

somewhat lofty, philosophical approach to attempt to grasp the "big pic-

ture" of how it all should go together. It could not possibly include

all the recent work that has been done in CAD/DA. At times, important

points may be oversimplified or obvious points may be overemphasized.

But the overall goal is a flexible and adaptable system. This ini-

tial definition must also be flexible/adaptable, and it will become more

detailed and specific as work is done by others to support it. This

extends to many of the decisions made in developing the model; details

are presented as suggested ways of implementing the system, not as the

only—or even the best—answers. Besides offering an overall structure

to get things started, the aim is to inspire further thinking and

research. If portions are found to be oversimplified or erroneous,

i
perhaps such discoveries will motivate work to be done to correct the

deficiencies, better define the structure, and help fill in parts of the

system.

31

•*- - -

——

III. Tne Super-CAD Model

Introduction

As indicated in the previous two chapters, the main goal of this

project is to define a structure for an integrated design automation

system. A model is developed to provide that definition, and this chap-

ter describes the model. Just as top-down and structured design tech-

niques can be applied to the design of digital circuits and systems, they

are applied to the development of the Super-CAD model. Yourdon defines

structured design as "the art of designing the components of a system

and the interrelationship between those components in the best possible

way" (Ref 70:7). That philosophy is employed in tne design of the

model,

i The top-down methodology is also used in presenting the model in

this chapter. A systematic approach first gives a general description,

then decomposes it into greater levels of detail (Refs 54:329 and

69:618). The design stages (Figure 1) will be examined in reverse or-

der. The Realization stage, where the least new work is required, is

analyzed first. Then the Implementation stage is examined in great

detail. Breuer says that "logic design requires over 5U percent of the

total design effort, yet few automated tools" are available to support

it (Ref 51:68). This is the major area of emphasis in the Sup;r-CAD

model. Finally, the Specification stage, where the greatest future work
i

will be required, is presented in general terms.
I

It is important to point out that this presentation of the model is

one example of how the system can be implemented and is not meant to

rigidly bind follow-on work. Future efforts will determine the actual

details of implementation as Super-CAD is developed. Portions of the

32

»•iMMMMHtfMMMta*— J

——

model can be examined in greater detail and modified as necessary.

Assumptions. To facilitate the development of the high-level

Super-CAD model, several assumptions have been made:

1. When a specification for a problem is partitioned into subsets,

the subsets are assumed to be mutually exclusive. In other words, no

part of one subset can be part of any other. For example, if a specifi-

cation included a particular computer instruction set, subsets could be

made up of specific instructions that did not overlap. (This does not

mean they cannot interact. Some instructions might rely on others, so

that a modification to one might impact several.) This assumption sim-

plifies the part of the model where individual subsets are considered

for implementation. It assures that a specific, exact implementation of

one subset does not affect any others. (The concept of close implemen-

tations is examined in section 2.1.1.) Since some problem requirements

may not be partitionable into mutually exclusive subsets, the model may

not be effective in those cases.

2. The point where hardware and software designs separate from each

other is placed arbitrarily at a specific location in the Realization

stage. This simplifies the presentation of the model, but also limits

its flexibility. Refer to the Realization section, block 3.2.3, for a

further descussion of this subject.

3. Thomas describes two major parts of a digital system: control

and data (Ref 12:1201). These are not treated separately here, since

this model is general in nature and not concerned with the differences.

Also, the designer may incorporate his own partitioning of data and con-

trol by the nature of his definition of requirements and specifications.

Detailed later work, should consider them individually.

33

_: »a ~..*t .

-—

Lach of these assumptions relates to an important area in digital

design. Future efforts to carry on the work, of this project can ennance

it by removing the assumptions and making the model applicable to more

general cases.

Notation and Conventions. Presentation of the model relies heavily

upon representative diagrams. Several approaches are combined in de-

fining the Super-CAD structure. Principles of structured design are

used as much as possible to show, at least at the higher levels, major

process blocks with only one input and one output. Although the lower

levels stray from this occasionally, the overall result still actively

supports structured design. (See Ref 70.) Some of the concepts of Data

Flow Diagrams (DFD's) (.Ref 71) are incorporated also. The model dia-

grams combine DFD and flowchart conventions to show data and control

together. Data flows are labeled using DeMarco's hyphen convention, and

they may include more that one data element. Process blocks use

flowchart conventions—rectangles or diamonds—and interaction with the

user is shown with circles. Elements of the database are indicated by

straight lines, similar to DFD files. (.Ref 71:Chap. 5)

A key to the model representation is the use of hierarchical levels.

Again following DeMarco, each succeeding level is numbered with an addi-

tional decimal point. (For example, 2, 2.1, 2.1.1, etc.) Each separate

diagram is a decompostion of only one "parent" process block. When pro-

cess numbers become unwieldy, only the final digit will be shown on a

particular diagram. DeMarco continues leveling until processes can no

longer be divided into smaller pieces ("functional primitives"). In

many cases, the Super-CAD diagrams do not go all the way to the primi-

tive level, since further decomposition will depend on future research.

34

(Ref 71:Chap. 7)

The important thing about the diagrams is that they provide a sys-

tematic view of the Super-CAD structure, by following the numbering

convention, any one process block can be traced down to its lowest level

of decomposition. Also, this approach allows us to examine one part ot

the model at a time, with increasing levels of detail.

The diagrams for the model are presented throughout this chapter and

are repeated in the Appendix in a continuous set of figures for easy

reference.

Example. In Chapter I the example of an electronic calculator helped

demonstrate the levels of abstraction ana stages of design used in

this project. In this chapter a more complex example is used to illus-

trate different parts of the model. It is taken from "MADAM": The

Micro Ada Machine Project, in which this researcher participated (Kef

25). The aim of the project was to design a microprocessor that used

machine instructions corresponding to the pseudo-code generated by an

Ada compiler. It was based on an instruction set previously defined by

Garlington (Ref 129). The MADAM project succeeded in producing module

designs for a major portion of the microprocessor to support a subset of

the designated instructions.

The Model

"Digital system design is, in fact, a sequence of steps and itera-

tions which aim at turning an idea into a physically realized system."

Developing "programmed computer aids" for such design efforts requires

that "some model [of thatj process must be constructed" (Ref 12:1201).

Figure 6 shows the overall process block for the Super-CAD model, ana

Figure 7 is the next level showing the three design stages described in

35

J«J.

——

>

Requirement

(

PRODUCE

' THE

DESIGN

1

Total-
Systern-
Design

f

Requirement

1 V

DEVELOP

BEHAVIORAL

SPECIFICATION

Behavioral-
Specification

2 V

PRODUCE

DESIGN

IMPLEMENTATION

Detailed-
Design

3 V

COMPLETE

DESIGN

REALIZATION

•>

Total-
Systea-
Design

r

FIG 6. Overall Super-CAD Process FIG 7. Mein Design Stages

36

Chapter I. Design should start with the input or a requirement at the

top. By the time it has progressed through block 2, a detailed design

has been generated. Block 3 turns it into a Realization.

Realization. The Realization stage takes tne design created in

block 2 and produces the actual physical design, with associated

software, ready for fabrication. Figure 8 indicates two main divisions

within block 3.

3.1. The first division (Figure 9) partitions (3.1.1} the de-

tailed design along the boundaries of the separate IC's defined in the

Implementation stage, and then separates hardware and software (3.1.2).

(The Implementation stage, block 2 in Figure 7, is described later in

the chapter.) The tools to accomplish these tasks are to be detined as

the Super-CAD structure is filled in. In this case, they will be

straightforward programs that recognize the divisions among the dif-

ferent IC's and between hardware and software already delineated during

Implementation. They will assure that the data is structured to be

split up by later process blocks. For example, the MADAM project designed

separate modules for a number of functions. Many were combined to

run simulations and test interfaces during Implementation. If the nod-

ules represented different IC's, block 3.1.1 would prepare the data so

the boundaries between IC's were clear and the IC's could be separated

in later steps. (Note in Figure 9 the use of the symbol /" to indicate

a process block number that has no lower level diagram.)

3.2. The second division within block 3 is where most of the

Realization work is done: layout of the IC's and/or PCB's and coding of

the software. Figure 10 gives the expanded view of the constituent

blocks.

37

-—•-*•- — — — . •

r

3.1

Acceptable-
Detailed-
Design

PARTITION

THE
DESIGN

3-2

Design-
Blocks

LAYOUT/CODE

THE

DESIGN

Total-
Sys tern-
Design

y

FIG 8. Block 3 - Realization

38

Ill
Acceptable-
Detailed-
Deslgn

3.1.1/ ,,

PARTITION

INTO

BLOCKS

Partitioned-
Blocks

3.1.2/ w

SEPARATE
HARDWARE &
SOFTWARE
BLOCKS

Design-
Blocks

if

FIG 9. Block 3.1

39

3.2
Design-
Blocks

YES

3.2.2

Hardware-
Blocks

Software-
Blocks

3-2.3 ±

PRODUCE
IC LAYOUTS

IC-
Characteristics

3.2.4 j;

Firraware-
Charac teris tics

PRODUCE
SOFTWARE &

FIRMWARE

Software/
Firmware-
Design

PRODUCE
PCB LAYOUT

Hardware-
Design
 >K-

3.2.5/
JOIN HARDWARE
AND SOFTWARE

DESIGNS

Total-
System-
Design

FIG 10. Block 3.2

40

^A^.

3.2.1. The first block divides the hardware and software parts

of the design, sending them to their respective process blocks. Note

that many of the decision blocks in the model function like tnis one.

They may represent iterative processes with several layers and more than

one output. As in this case, the flow of data and control caay exit ehe

block by two or more paths at the same time. Thus, blocks 3.2.2 and

3.2.3 can operate concurrently.

3.2.2. On the hardware side, the system prepares a layout of

any newly designed IC's (Figure 11).

3.2.2.1. First, the blocks which can be realized by existing

IC's are separated.

3.2.2.2. The new IC blocks are transformed into IC layouts by

the placement-and-routing programs. MP2D (Ref 28) is a prime example of

such a tool. This area has received wide attention in recent years.

Reitmeyer describes several systems under development, some of which are

extensions to UP2D (Ref 3). Tobias discusses several layout methods and

highlights work being done at Caltech on "bristle Blocks, a silicon com-

piler" (Ref 72:98-99). (See references 73, 74, 69, and 12 for details

of the system.) Many othei." layout systems are also being developed (see

Refs 57, 75-79, and 92), and a project is under way at AF1T to apply

artificial intelligence principles to the layout problem (Ref 8b). The

MADAM project used MP2D to run a sample layout for its hardware stack

design.

3.2.2.3. After placement-and-routing, the layouts for the new

IC's can be examined by the user at a graphics terminal. At this point,

the user may malce changes to the layout through the interactive graphics

system. Notable examples of such tools are "systems offered by Calma,

41

..... <

3-2.2 Hardware-
Blocks

NO

Existing
IC-Blocks

New-IC-
Blocks

Interaction

LIBRARY
•5/

Existing-
IC- Physical'
Characteristics

CATALOG
PHYSICAL

CHARACTERISTICS

V

V
GENERATE IC

PLACEMENT
& ROUTING

•3/
Layout

REFINE

LAYOUT

•*/ v
Final-
Layout

GENERATE
PLOTTER DIAGRAM

& MASK SET

New-IC-
Characteristics

IC-
Characteristics

FIG 11. Block 3.2.2

42

— i '_

Applicon, and Computer Vision" (Ref 72:98,). In addition to Delng able

to analyze and modify the layouts generated by Super-CAD, designers may

also "directly draw . . . layout patterns on [the] CRT display" (Ref

72:90) if they so desire. This permits simpler designs to De input to

Super-CAD to, for example, develop a mask, set or plotter diagram. An

additional tool here is the Graphics Work Station under development at

AFIT (Ref 5ö). An Applicon was available for the MADAM project and

could have been used to examine and modify the stack design, if neces-

sary.

3.2.2.4. After the layout is finalized, the system will gen-

erate plotter diagrams and a set of masks for the new IC's. The Zy-

netics Flatbed Plotter is an example tool for drawing the diagrams (Ref

25). Also, several projects are underway to enhance layout drafting for

mask set production; for example, LTX (Ref ÖÜ). Actual production at

the present time is largely a manual process. Work is needed in this

area to draw it completely into the Super-CAD system. At this point in

the MADAM example, a layout diagram of the hardware stack was made on

the Zynetics plotter.

3.2.2.5. The final block of Figure 11 catalogs the physical

characteristics (pin-outs, dimensions, etc.) of both new and existing

IC's (right and left paths from 3.2.2.1) for use in later PCB design.

This information comes from the database libraries for the existing

chips and from the final layout design for the new chips.

Of course, the user may not wish to go on to circuit board design.

With Super-CAD he may chose to terminate the design process here at

block 3.2.2 and receive his IC design and a mask set as output. Alter-

nately, a designer could chose to start using the system at this

43

--- - .-<•—^ i^ ••...— -^

locacion. Working through the Executive, he couid enter the character-

istics of a set of chips at block 3.2.2.5 for designing a complete cir-

cuit board.

The experiences in the tLADAM project point out how important this

area of IC layout will be in Super-CAl). Only a sample layout for the

hardware stack was run because the CAD system could not support a design

of MADAM's size. Logic 4 simulations could not be performed with more

than a couple of modules at a time (see the Implementation section

below), and MP2D was similarly limited (Ref 25). Super-CAD will over-

come these deficiencies and be able to handle complete VLSI designs.

3.2.3. Returning to Figure 1U, on the software side the system

proceeds to produce the software portion of the design. As Super-LAD is

currently planned, software design is essentially conducted in conjunc-

tion with the hardware design during the entire Implementation stage.

This is facilitated by the use of existing families of IC's to fill the

requirements of the problem. At the same time, existing software mod-

ules to operate those IC's will be available in the database, AS fami-

lies of IC's are selected, software modules will also be selected and

modified as necessary to interface with the whole system and satisfy

specification requirements. Also, it is possible to assign different

function, »rit the problem specification to either hardware, software, or

firmware, and the decision can often be delayed (Ref 54:332) down to the

logic level of abstraction. When suitable software modules are not

available, Super-CAD will design them (or assist in their design) during

the logic design portion of Implementation.

Once all modules are complete, and the hardware and software designs

have been split up, block 3.2 3 finalizes the software (Figure 12).

44

—* ' - m ,j.._ _i_ •-- •*- - *•'

"1

•1/

Software-
Blocks

CODE AND
DEBUG

SOFTWARE

•2/

Coded-
Software

TEST AND
INTEGRATE
SOFTWARE

Tested-
Software

FIRMWARE^.

•4/

Firmware-
Blocks

PRODUCE
FIRMWARE

DESIGN

Firmware-
Design

'SOFTWARE
OR

TRMWARl
„T,
Inter-1

action
(USER)

^SOFTWARE

sraaining-
Software-
Blocks

Firmware-
Characteristics

Firmware-
Blocks

>

.6/

<-

INTEGRATE
FIRMWARE

& SOFTWARE
OPERATIONS

Software/Firmware-
Design

FIG 12. Block 3.2.3

45

=

3.2.3.1. Under current Software Engineering techniques, sys-

tem software follows a software development cycle (Refs 81-64 and 127).

Super-CAD will handle the requirements and design portions of the cycle

in the Specification and Implementation stages. Existing software mod-

ules selected during Implementation will already have been coded and

tested. Any new or modified modules, plus the portions of the software

design that put it all together to meet the specification, will be

handled by this block and the one following. Coding and debugging is

still a predominantly manual process, but Irvine and rirackett descrioe a

Software Engineering Facility (SEF) which could lead to an effective

Super-CAD tool for automating it (Ref 85).

3.2.3.2. Test and integration of the new code is conducted

next, and the SEF would be of use here, also. For Super-CAD to be ef-

fective, other automation tools will have to be developed in this area.

A current AFIT project will create an automated software development

environment, integrating available software engineering tools and tech-

niques and developing new ones (Ref 121). When complete, it will be an

important part of Super-CAD. In addition, Super-CAD should ultimately

provide an interactive facility to aid designers who want to create

their own software.

The MADAM project did not originally include software. If future

projects were to complete the MADAM design and approach the software

aspects, these last two blocks of Super-CAD could be extremely helpful

in producing the software to run the machine.

3.2.3.3. An important decision is whether to implement

software in firmware or not. Firmware is computer "circuitry which per-

forms the functions of program instructions" (Ref 131:206)« it can be

4b

--- -

r

thought of as "part hardware and part software": "microprograms" that

are stored permanently in RUM (read-only memory) Ilj's (Kef 132:2-33).

Thus, firmware "generally refers to software that has been made opera-

tionally permanent by storing it in a type of hardware". It allows

"many repetitive tasks" to be "hard wired" into the computer for greater

efficiency. (Ref 131:207) This block, of the model will, with r.he in-

teractive help of the user, separate the portions of software to be

located in firmware (e.g., programs for embedded computer systems in

aircraft).

3.2.3.4. The blocks that are to become firmware are then for-

mally organized into the firmware design. Special tools must be created

to accomplish this task.

3.2.3.5. Next, the physical characteristics of tne firmware

IC's will be cataloged.

3.2.3.6. The firmware blocks will rejoin the remaining

software blocks for the full software/firmware design.

3.2.4. From Figure 10, the circuit board layout block is expan-

ded in Figure 13.

3.2.4.1. The first step structures the data previously ca-

taloged on the characteristics of the hardware and firmware IC's, for

use by the layout program.

3.2.4.2. Then the PCB layout is generated. Souicup likens

this problem to that of an IC layout (kef 57:1201). This is another

area where many current CAD tools may be brought into Super-CAD. Some

examples are NOMAD (Refs 87 and 88), DASLL (Ref 89), and BRAIN (Ref 90).

Also, a research project on PCB routing is in progress at AFIT (Ref 91).

3.2.4.3. The next block is similar to 3.2.2.4 for IC layouts.

47

3-2.*»
Hardware/Firnware-
Characteristics

.1/ \l

JOIN IC
CHARACTERISTICS

IC-
Characteristics

.2/ V

GENERATE
PCB PUCEMENT

& ROUTING

PCB-
Layout

•2/ \ I

REPINE

Inte rac tion /^

(USER)

LAYOUT

•V \

Final-
PCB-La;

1

pout

GENERATE
PLOTTER DIAGRAM

& PCB
MASK SET

\

Hardwar
Design

1

9-

FIG 13. Block. 3.2.4

48

 —-•• -• ••• •• —-•- ——-*•

—

where ehe user can refine or modify the final layout. The same tools

apply.

3.2.4.4. This step is also similar to an earlier one tor

IC's, 3.2.2.7. The same plotting tools are used, and—as before—more

work, is needed to automate mask, set production.

3.2.5. The final block in Figure 1U is where the complete

hardware and software designs are joined together to provide the total

system package for the user. The fact that this block is not decomposed

beyond Figure 10 may be misleading. It will incorporate many end-oi-

design operations, such as formatting the hardware and software portions

for output, and requires future work to be defined fully.

This completes the discussion of block 3, the Realization stage. We

have seen how the development of MADAM paralleled many of the steps

given in this stage. That project could have benefitted significantly

from a system like Super-CAD. The MADAM example is used with greater

detail in the next section, which examines the Implementation stage.

Implementation. (,Block 2, Figure 7) The major emphasis of this

project is on Implementation. Thus, this part of the Super-CAD model is

the most developed. Figure 14 shows Implementation broken up into two

main blocks. It is assumed that the Specification stage (block 1, to be

described later) has produced a behavioral specification as input to

this stage. Partitioning of the problem into a suitable specification

will be discussed in the Specification section below. The important

thing is that the specification must be structured enough to allow sub-

set partitioning for use in the Implementation stage.

2.1. Super-CAD attempts to complete a design at as high a level

of abstraction as possible. Chapter I showed that this can simplify the

49

iM^i» I«».

2

Behavioral-
Specification

2.1

DEVELOP

THE
DESIGN

2.2 >

Detailed-
Design

r

ANALYZE

THE
DESIGN

>

Acceptable-
Detailed-
Design

FIG 14. Block 2 - Implementation

50

L.

design process—by masking many lower level details—and produce improved

designs more efficiently. Referring to Figure 15, the problem is

attacked first at the Behavioral level. If all or part of it cannot be

solved with existing implementations at that level, Super-CAD takes what

is left to the Functional level. If any part of the problem is still

not implemented, it goes to the Logical level for final implementation.

At any step, whenever all subsets of the specification have Deen satis-

fied, the design is finisned. Then all that remains is to interface the

constituent implementations, including any bits-and-pieces that must be

added, to complete the design.

The result of this approach is a top-down design, with implementa-

tions at the highest possible level. As discussed earlier, this is

essential if VLSI/VHSIC design is to be effective (,Ref 57:1302). The

strength of this system is that it satisfies as many specification sub-

sets as possible by mapping them to appropriate existing implementations

in the database libraries. It filters down to the level where enougn

details are present to complete the design, including, in some cases,

synthesis of new circuits at the logic level.

The process is supported by libraries of components at all levels

(Ref 52:92), with new families being added as they become available.

The flexibility of the system is further enhanced by allowing the user

to choose the mode of design. As we shall ^oon see, the normal mode is

highly interactive. Working through the Executive program (Chapter II;

the designer can help the computer to solve difficult parts of the

design; for example, where existing implementations are only "close" to

the specification requirements. On the other hand, it will be possible

for him to prohibit any c lose solutions and force the design all tne way

51

hi.

Behavioral-
Speoiflcation

YES
(Subsets),

^r IMPLEMENT ^\
y^ COMPLETELY AT ^S
»v^ BEHAVIORAL LEVEL s
tioJl\^ 1 /^

YES
.(Whole Set)

Complete-Behavioral
Subset-Implement»

"Complete-Behavioral-
Level- Implementa-

tion

si® (Partial Subsets)

Leftover-
Behavioral-Subsets

''
2.1.2/^V.

YES
(Subsets),

yr IMPLEMENT^N.

y^ COMPLETELY AT ^X
YES

JVbole Set)
"N. FUNCTION

Complete- ^s^
Functional- ^v.

Subset- ^s.
Implementation

AL LEVEL S
s' Coaplete-

^>y Functional-
JT Level-
HO Implementation

(Partial
Subsets)

2.1.3

Leftover-
Functional-Subsets

IMPL8KENT AT

XGICAL LEVEL

Complete-Logical-
Level- Implementation

 • U

 >

2.1.* -

-«

2.1.5/ < '

INTERFACE THE COMPLETE THE

IMPLEMENTATIONS IMPLEMENTATION

1

Detailed-
Design

r

FIG 15. Block. 2.1

52

to Che Logical level. This might also be accomplished by allowing him

to select only the logic library so that the specification automatically

falls through to total synthesis at the logic design level.

Another choice that would deny any close implementations would De

the automatic mode. In this case, the designer could input his re-

quirements and wait to see if Super-CAU can complete a design without

his help. Then if it failed, he could try again interactively.

A number of tools are under development that can be applied to digi-

tal design at the level of block 2.1. While most are not compatible

with Super-CAD, some of their techniques are important and need to be

considered as Super-CAD is further developed. (See Refs 93-I0Ü, lib,

and 35.) Some of these tools are Hardware Description or Register-

Transfer Languages. It should be possiDle to allow a user to bypass

Super-CAD's Specification stage and enter his requirements in any one of

these languages. The system would need suitable translation programs to

transform the input for use by the blocks within 2.1.

2.1.1. The Behavioral level is divided into two portions

(Figure lb). The first attempts to implement the complete behavioral

specification at one time, by mapping the whole specification to an

available implementation or set of implementations.

2.1.1.1. Figure 17 shows this block decomposed to its lowest

level for this report. Notice that, because of the length of the num-

bers at this level, only the final digit is shown on each individual

block. Also, since this is the final level of division—with many more

blocks in later figures—the * /" convention is no longer followed.

Whenever the abbreviated numbers are used, no further decompositions are

present. The abbreviated numbers will also be used for the paragraph

53

2.1.1

2.1.1.

Behavioral-
Specification

IMPLEMENT
WHOLE SET

?

NOl

YES

Complete-Behavio ral-
Level- Impleme r.tation

2.1.1.2

Behavioral-
Specification

YES (All)
Complete-Behavioräl-

Subse t-Implemen tation

YES
(Partial)

Leftover-
Behavioral-
Subsets

FIG 16. Block 2.1.1

54

mmmmm I.mmfd

2.1.1.1

.k

Revised-
Behavioral-
Specification

MODIFY
BEHAVIORAL

SPECIFICATION

Inter-
actior

Behavioral-
Specification

LIBRARY

Chip-Families-
Sc- Behavior

YES
LEMENTATIOJiXcomplete-

YES

Behavioral-
Implementation

Behavioral-
Specification-
Comparison

Behavioral-
Level-
Implementation

EXISTING
IMPLEMENTATION

CLOSE ^/Behavioral-
Close- "W^^ Specification
Behavioral-
Implementation

CLOSE
IMPLEMENTATI f

Clos» - APPLY

7

Behavioral-
Specification

FIG 17. Block 2.1.1.1

55

headings.

. 1. The first block is responsible tor comparing the

behavioral specification with tne behavioral libraries to determine if

families of circuits can be found to implement the complete specifica-

tion. If so, the design is complete and it is sent on to block 2.1.5

(.Figure 15). If not, the comparison goes to the next block.

In the MADAM microprocessor example, an existing processor family

might be able to satisfy all of the specifications and perform the Ada

subset. Of course, the user would still have the option or rejecting

the implementation if he was not satisfied with its performance charac-

teristics, possibly in areas he had failed to empnasize during Specifi-

cation.

.2. In the next block, a routine determines if any or the

library solutions are close enough to the specification for possible

use, depending on the desires of the user and his ability to modify the

specification. If not, the specification is sent out to block 2.1.1.2

(.Figure lb).

.3. But if a close solution is available, the block in-

teracts with the user to decide if it applies. (.In the "automatic"

mode, "no" would be the only option nere.) Again, if the answer is

"no", the specification is sent to 2.1.1.2.

.4. If the answer is "yes", however, the user can modify

the specification interactively, and send it back for another try.

An example of a close implementation for MADAM might be where all

but one of the instructions could be performed (e.g., a stack manipula-

tion instruction (Ref 25: Part I, 9)). It would be up to the user to

decide if that instruction is really necessary or could be accomplished

56

- • • •' ••-->• - - - •• '<• *

a different way.

2.1.1.2. If the system cannot satisty tue whole specifica-

tion, 2.1.1.2 attempts to implement subsets (.Figure Id).

.1. Partitioning of the specification is discussed below

under the Specification block, and Super-CAD will perform the parti-

tioning in that stage. (An alternative would be to accomplish it here

at the beginning of 2.1.1.2.) In MADAM the partitioning might be

strictly between the individual instructions. Block .1 divides tne

specification according to the partitions and assigns indexes through a

simple "FOR" loop.

.2. This block initializes the index to 1.

.3. Next, the currently indexed subset is designated and

sent to the following block.

.4. The subset is compared to existing circuit behaviors to

find an implementation. In the case of a MADAM behavioral subset made

up of one or more individual instructions, an implementation might be

available to perform those instructions.

.5. If one is found, it is identified (e.g., by entering an

identifier in a table of implementations).

.b. If not, the subset comparison is examined for a solu-

tion that is close. As before, a close solution is one that meets most,

but not all, of the specifications of the subset. For example, the

MADAM instructions for manipulating the stack architecture may not com-

pletely match up with any available implementations, but it might be

worthwhile to consider a change in the requirements to benefit from an

existing behavioral implementation.

.7. If none is found, the subset is identified as not

57

•

Z-11Z
äatiarionl-

Sp*clfic*.tlon

FOR 1-1. I
' ASSION SUBSETS

.16

.2 3 Indexed-rx.ilvloni-
SubuU

Cbip-Pulliai-
V-b«tuiTior ,

1*1

I Inrtcxwi-BehavIoral-SubMt«

SELECT
SUBSET 1

IDSNTTJT
SUBSETS

IMPACTED

SAVE SU3SET 1
I IMPLEMENTATION

SAVE MODIFIED
SUBSET 1

IMPLEMENTATION

YES

Leftover-
3eh»Tio rM

•if Subsets

.18

i«-l + 1

Couplet«- 3eh*.Yloril-Subset- Lmplenen ta t Ion

FIG 18. Block 2.1.1.2

58

—u

implemented. (.Again, a special table could be used.,)

.8. On the other hand, when a close solution is found,

Super—CAD asks the user if he can modify the specification for that sub-

set to be implemented. A "no" answer sends the subset to block .7 to De

identified as above.

.9. A "yes" allows the user to modify the specification.

With a MADAM stack instruction, he could revise the requirements to fit

the existing solution.

.1U. Then the system maps the subset to the implementation.

.11. At this point it is important to determine if the

modification has affected any previously implemented subsets. For exam-

ple, modifying one i4ADAM stack instruction could prevent another one,

already implemented, from functioning properly.

.12. If not, the new implementation is saved, as before.

. 13. However, if there is_ an impact, the user is notified.

.14. He can then decide if the impact srhould be permitted.

.15. If not, Super-CAD gives him the choice of trying again

to modify the specification for the subset at block .9. If he declines,

control goes to the "no" side of block .8 to keep track of the unimple-

mented subset at .7.

An interesting enhancement here would be to insert a loop where the

user could attempt to help Super-CAD modify the specification parti-

tioning to arrive at different subsets. In the MADAM example, perhaps

the three interrelated stack manipulation instructions could all be com-

bined into a single subset. This concept is left for future work.

.lb. On the "yes" side of .14, if the user allows other

implemented subsets to be affected, they must be identified. A routine

59

 —- — - -• •— ••••' _Jj

flags those particular subsets. Super-CAD then returns to the beginning

of the loop to attempt to reimplement those that have been flagged. The

others will fall right back, through, since they do not require rework-

ing. Thus, the MADAM stack instruction specifications might each be

modified to allow close implementations where they will operate together

properly.

This process will be effective precisely because, tor any subset

affected Dy the changes to another, the system will immediately redo

that implementation. While this may require a number or iterations,

each time the system goes through it, more of the specification will be

satisfied, with a decreasing trend in the amount of computer work re-

quired. It is the user who decides if any changes should be made or

impacts on other subsets allowed. As before, the automatic mode will

bypass any attempt to rework a close implementation.

At the same time, Super-CAD must anticipate the possibility of

"thrashing", where one modification leads to another, which leads to

another, etc. It would be up to the user to avoid this and choose to

send subsets to the next level for implementation. However, Super-CAD

may have to suggest it to him after he has gone through a certain number

of iterations without any progress.

.17. After a particular subset has been processed, this

block runs a simple test to see if that was the final subset.

.18. If not, the index is incremented and the process con-

tinues for the next subset.

.19. When all subsets have been processed, Super-CAD checks

to see if any have not been implemented (e.g., by examining the "unim-

plemented" table). If none remain, the design is complete and it is

6U

passed on to block 2.1.4 (figure 15). Otherwise, the leftover

behavioral subsets (e.g., any MADAM instructions not yet implemented)

are sent to the Functional level.

2.1.1 Summary. Returning to block 2.1.1 on Figure 15, several

points should be clarified. The outputs of 2.1.1 have been described in

the previous paragraphs. The one on the right is the case where the

whole set of specifications can be met by one complete behavioral level

implementation. On the left is the situation where the problem is solved

completely at this level, but by implementing the specification in

subsets. The output at the bottom is for the case where a partial im-

plementation of subsets occurs at tne Behavioral level. This includes

the situation where none of the subsets could be implemented. Thus, the

leftover subsets are passed down to the next level, including the situa-

tion where they are all leftover.

Since this part of the model is an area that has never been automa-

ted in this way before, there are no existing tools to cite as examples.

The Carnegie-Mellon work certainly operates at these levels, but the

approach is quite different, as we shall see in the Comparison section.

Thus, the tools to support the blocks of Figures 17 and 18 will have to

be developed specifically for the Super-CAD system.

2.1.2. The Functional level performs in exactly the same way as

the Behavioral level, with one important addition. (See Figure 19.)

2.1.2.1. The addition is this block, which translates the

remaining behavioral subsets into a Functional level specification.

Altnough it is not decomposed further here, the block will be made up of

several programs necessary to accomplish the translation. Not the least

of these would be one to duplicate the partitioning of the original

bl

--•"-"• ••••—-•* • — • —

2.1.2

2.1.2.1/ \fr

Leftover-
Behavioral-
Subsets

TRANSLATE TO
FUNCTIONAL

SPECIFICATION

2.1.2.2

Functional-
Specification

YES

Comple te-Func tional-
Level-Impleme n tation

2.1.2.3

Functional-
Specification

YES (All)

Comple te-Func tional-
Subse t-Iaplementation

YES
(Partial) Leftover-

Functional-
Subsets

FIG 19. Block 2.1.2

62

«• , - M mtm»m

behavioral specification in the Specification stage. Partitioning here

could be along the lines of the behavioral subsets, or along other lines

to facilitate implementation at this level.

Continuing with the MADAM project example, the Functional level

specification might retain the same instruction set partitioning.

However, more detail is required, such as a decription of the register-

transfers and functional operations necessary to perform the instruc-

tions.

2.1.2.2. The next block attempts to implement the whole func-

tional specification, performing operations parallel to block 2.1.1.1.

Figure 2U shows these operations. Since this block of the model dupli-

cates Figure 17, the constituent blocks will not be described sepa-

rately. Refer to the paragraphs under 2.1.1.1 for an explanation of the

individual operations.

2.1.2.3. (.Figure 19) When the whole functional specification

cannot be satisfied with a single implementation, Super-CAD again looks

at subsets. As in the previous paragraph, Figure 21 duplicates the

operations of 2.1.1.2 in Figure 10. The paragraphs under 2.1.1.2 ex-

plain the equivalent operations.

2.1.2 Summary. Back at Figure 15, the block 2.1.2 outputs are

similar to those of 2.1.1. The only difference is the one on the right

which might have to be interfaced with behavioral subset implementa-

tions, and thus goes to 2.1.4 instead of 2.1.5. For instance, some of

MADAM's instructions may have been implemented as behavioral subsets and

others as functional subsets.

Again at this level most of the tools to support the operations will

have to be created. Thomas describes how the Caltech Silicon Compiler

03

2.1.2.2 Functional-
Specification

UBftARY
Chip-Families-

&-Functions

YES

Complete-
Functional-
Level-
Inplenentation

T:XISTING
IMPLEMENTATION

CLOSE ^'•functional-
T^^ Specification

CLOSE
J^^IMPLEMENTATION

Close-X^^ APPLY
Functional- ^\^ j

Implementation
Functional-

Specification

FIG 20. Block 2.1.2.2

64

2.1.2.3
Functlonml-

Soecificatlon

FOR 1*1. n
ASSIQN SUBSETS

Indexed-Functional-
Subset»

I Indexeä-FunctloruU-Suboeta

.16

Chip-F»»ilies-
t-Functions

SELECT
SUBSET 1

IDENTUT
SUBSETS

IMPACTED

Functional-
Subaet-i

Subeet-i-
Zopleaenta-

tion

SAVE SUBSET 1
IMPLEMENTATION

SAVE
SUBSET 1

Modifled-Subset-
1- Implement»tion

SAVE MODIFIED
SUBSET 1

IMPLEMENTATION

.18

i«-i • 1

YES

Laftover-
Functional-

Subsets

CoBplete-Functional-Subact-Iaplaaentfttion

FIG 21. Block 2.1.2.3

65

operates at the functional level (Ref 12:1207), and some of the tech-

niques might be useable by Super-CAD.

2.1.3. Any remaining subsets at the Functional level go down to

the Logical level. Once again the procedures are the same, except that

this level has only one output. This is the lowest level, and if a

design cannot be completed with existing IC's, an additional block will

synthesize new ones (Figure 22).

2.1.3.1. First the leftover functional subsets are translated

into a Logical level specification. In the case of the MADAM instruc-

tions, specific combinations of registers and designated modules (adder,

multiplier, stack controller, etc.) would be described. As before,

Super-CAD tries first to find an implementation for the whole specifica-

tion, and if that fails, seeks subset implementations.

2.1.3.2. See Figure 23 and the explanation for 2.1.1.1.

2.1.3.3. See Figure 24 and the explanation for 2.1.1.2.

2.1.3.4. If any subsets still remain, the logic synthesis

block is activated (Figure 25).

.1. First a set of tools partitions the subsets to prepare

them for logic design. With the MADAM design, the logical modules would

be broken up further into basic building blocks (gates, flip-flops,

etc.).

.2. Then logic synthesis programs take the subsets and

apply elements from an appropriate cell library in the database to com-

Dlete the design. For example, the MADAM project, througn the Logic

4/MP2D programs, used a CMOS/SOS cell library composed of 44 different

gate-level components (Ref 25: Part I, 3-4). This step and the previous

one replace the manual logic synthesis actually used in the MADAM

6b

•—•• -

2.1.3 Leftover-
Functional-

2.1.3.1/y Subsets

TRANSLATE TO
LOGICAL

SPECIFICATION

2.1.3.2A

Logical-
Specification

IMPLEMENT
WHOLE SET

7

N0N

YES

Complete-Logical-
Level- Implemen tation

2.1.3-3 A

Logical-
Specification

IMPLEMENT
SUBSETS

?
NOV

YES (All)

Complete-Logical-
Subset- Implementation

(Partial) Leftover-
2.1.3.4 \(Logical~Subsets

SYNTHESIZE
LOGIC
DESIGN

Logic-
Design

-2>r^

Complete-
Logical-Level-
Implementation

FIG 22. Block 2.1.3

67

J

r •

2.1.3.2

Revised-
Logical-
Specification

MODIFY
LOGICAL

SPECIFICATION

Logical-
Specification

LIBRARY
Chip-Families-

&-Logic

YES

Logical-
Specification-
Comparison

EXISTING
IMPLEMENTATION

CLOSE /^Logical-

Complete-
Logical-
Level-
Implenentation

^y^ Specification
Close-
Logical-
Implementation

CLOSE
'IMPLEMENTATION

Close*^ APPLY
Logical-^\ ?

Implementation
Logical-

Specification

FIG 23. Block 2.1.3.2

68

J

"^ 1

2-1-3-3

Logical-
Specification

TOR 1-1, n
1 ASSION SUBSETS

.16

3 Indexed-logical-
Subset*

• 3

Chip-Faailies-
Sr- Logic

i-»-l

Indexed1-Logical-Subsets

SELECT
SUBSET 1

IDENTITY
SUBSETS

IMPACTED

SAVE SUBSET 1
IMPLEMENTATION

SAVE
SUBSET

Modified-Subset-
. 1-Implementation

SAVE HODIFIED
SUBSET i

IMPLEMENTATION

.18

i«-l • 1

Couple t«-Logical-Subset-Implementation

FIG 24. Block 2.1.3.3

69

2,1.3.1»

Leftover-
Logical-
Subsets

•1 W

CELL LIBRARY

J Building-
y Blocks

Logic-
^%4 Design

PARTITION
LOGICAL
SUBSETS

.2 ^

Partitioned-
Logical-
Subsets

1

SYNTHESIZE
LOGIC
DESIGN

•3 \

Logic-
Design

SAVE
DESIGN

DATABASE

\

(Öontro

1

4

FIG 25. Block 2.1.3.4

70

design.

.3. Finally, a routine stores the logic designs in the

database.

2.1.3 Summary. The last three blocks actually represent a

very comp_ex portion of the system. A lot of future work will be re-

quired to fill them in. However, tools are available to provide some

guidance and support. For example, PLA (Programmable Logic Array) chips

and a variation, PAL (Programmable Array Logic), provide a certain

amount of flexibility for VLSI by permitting custom programming (Kefs

72:92; 7:1194; and 76:t>58). Thomas describes several logic synthesis

aids (Ref 12:1205-1209). For example, ALERT was ar «^arly system, and it

is further explained by Friedman and Yang (Ref 101). Another was MIMOLA

for designing digital processors. (See also Refs 102 and 103.) A

highly interactive approach is being pursued at IBM for automatically

generating a "detailed, technology-specific implementation" (Refs

104:234 and 105:543). In addition, CARS proposes a "top-down structured

approach I for! digital synthesis" (Ref 106:529).

Currently Super-CAD proposes to create new IC designs only at the

Logical level. Future work can expand it to encompass the Functional

and Behavioral levels as well, especially as new and more sophisticated

building blocks are added to the system. Thus, complex uodules defined

at the higher levels could be part of cell libraries at those levels.

New IC designs could be created from such modules without requiring

analysis at the logic level. (The logic would be implicit in the mod-

ules.)

2.1.4. The next step (Figure 15), after the design has gone

through all three levels of abstraction, is to gather together the

71

kt
• -

J

implementations trom the various levels. It might appear from Figure 15

that this "interlace" block is meant to combine all or the arrows that

lead to it. However, any one design problem follows only a single path

to arrive at block 2.1.4. Thus, interfacing actually combines all the

implementations that occurred along that one path. For instance, sup-

pose within block 2.1.1 only a partial number of the MADAM behavioral

subsets were implemented. If the remainder were tnen implemented as a

whole functional set within block 2.1.Z, then 2.1.4 would have to put

these implementations together to satisfy the overall requirements for

the design. The greatest amount of interfacing would be required if

implementations were found for only a partial number of subsets at each

of the three levels, with the remainder becoming new circuits during

logic synthesis.

Recall that Super-CAD has kept track of the various implementations

along the way. Block 2.1.4 must now put them together. Refer to Figure

2b.

.1. First, a routine checks to see if the whole design was

completed as a single implementation (at either the Functional or Logi-

cal level)

.2. If so, the implementation is finalized with whatever

bits-and-pieces are required (components such as registers, etc., that

may be needed to support the overall requirement).

.3. If a single implementation is not present, then the mul-

tiple imr.'.ementation identifiers are examined to locate the implementa-

tions themselves.

.4. Finally, these implementations are interfaced together.

This may be a very involved process, as portions of the Functional and

72

•"• -- - --- - • ••-•-•

2.1.4

.2

Implementation

"WHOLE" \ NO
IMPLEMENTATION

COMPLETE THE

IMPLEMENTATION

Detailed-
Design

->i«

Control—
No Data]

LOCATE THE
IMPLEMENTATIONS

.4

Implemen-
tations

INTERFACE
SEPARATE

IMPLEMENTATIONS

Detailed-
Design

FIG 26. Block 2.1.4

73

IIM^I»I1UIIIIMI1III in i " --A—'-^-^ •" *^

Logical levels are recursively called to complete the interfaces and

produce the final design. Because of this complexity, great empnasis

will be needed here in future work on the system.

2.1.5. The final block, of Figure 15 performs the same functions

as 2.1.4.2, for the case when 2.1.1 produces a single implementation

from the whole behavioral specification.

2.1 Summary. The central part of the model represented by

Figure 15 and the lower level diagrams is a crucial element in the

Super-CAD system. Here the siigle input of a partitioned behavioral

specification is molded into a single detailed design output. It is a

complex operation with the design effort following but one of many pos-

sible paths. As explained earlier in the Realization stage, this is

largely hardware-oriented, with software design occurring as a part of

it. Software modules are included at each step of implementation until,

in the Realization stage, they are broken out, coded, and tested. As

Super-CAD grows, this is an area that must be more sharply defined.

2.2. Going back to Figure 14, once block 2.1 produces a detailed

design, it is time for Super-CAD to analyze it in biock 2.2 (Figure 27).

2.2.1. Figure 27 may appear deceptively simple when, in fact,

simulations with the design can be quite complex. Two things help to

overcome the complexity. First of all, designing with existing families

of IC's means that those blocks have already been tested. The only

simulations required are for the interconnections and any new components

or IC's added. Secondly, the different levels of abstraction allow

simulation of the designs at those levels. It is possible to perform

multi-level simulations to test all three levels at once. The fact that

different subsets may have been implemented at the different levels

74

1 iftmnii i I • • • - 1A.

2.2

2.2.3/

MODIFY
DESIGN

T

.2.1/1

Detailed-
Design

RUN
MULTI-LEVEL
SIMULATIONS

Interaction Simulation-
Results

YES

Unacceptable-
Detailed- Design

Acceptable-
Detailed-Design

FIG 27. Block 2.2

75

«.

 . : m

means that partitioning boundaries already exist, facilitating the simu-

lation.

The Logic 4 program described in Chapter 1 is an example of a rela-

tively simple simulator using manually formatted input at the Logical

level (Ref 26). The biggest limitation in applying Logic 4 to tne MADAM

design was that it could not handle the whole design at once. Designs

of such magnitude will require VLSI-scale tools, but implementing

designs at higher levels of abstraction will also be helpful. Thomas

describes the benefits of increased speed and less memory requirements

using multi-level simulations of VLSI designs (Ref 12:1210). Hachtel

also gives a pertinent discussion of VLSI circuit simulation with a

"mixed mode" approach that can include (but is not limited to) the dif-

ferent levels of abstraction (Ref 1U7 :1271>—1277). Another mixed mode

approach is DIANA, for "logic, timing, and circuit simulation" (Ref

108:356).

Specific examples of multi-level simulators include SABLE, a struc-

tured approac'. being developed at Stanford (Refs 7b and 109). Others

are MULTI-SIM (Ref 110), MIXS (Ref 111), and an unnamed one described by

Agrawal (Ref ll2). The SARA system mentioned earlier (Refs 93-96) pur-

sues "multi-level modeling" for a "range of behaviors" (Ref 94:63).

Newton describes several other simulation programs developed at

Berkeley, including SPICE, SPLICE, and SAMPLE (Refs 75 and 113). An

earlier approach has also applied PERT (Project Evaluation and Review

Technique) analysis of critical paths to logic level simulation (Ref

114:152). The SCOAP program discussed in Chapter I, for analyzing the

testability of digital circuits (Refs 29 and 30), can also be used at

this part of Super-CAD.

76

•—to- -J,

=

Thus, a number of tools are available for use in digital design

simulation; Super-CAD may incorporate some, and borrow useful techniques

from others. A current project at AF1T will be developing a function-

al simulation tool (Ref 115) that can be used by Super-CAJJ. An im-

portant area for work is the need for tools to transform the different

levels of the specification into test inputs for the multi-level

simulations—a process that has usually been done manually by the de-

signer.

2.2.2. The next block in Figure 27, then, interacts with the

user to determine if the results of the simulations are acceptable. The

results can be displayed on the terminal and can range from messages

explaining simulation failures to complete simulation descriptions.

Thus, in simulations with the MADAM microprocessor design, a user could

quickly determine if it was functioning properly.

2.2.3. If the results are not successful or the user is not

satisfied, modifications can be made to the design, interactively. At

this point, optimization techniques may come into play. Brayton de-

scribes the APLSTAP and DELIGHT systems that work in conjunction with

several simulation programs presented earlier (Ref 55:1356-1360). When

modifications are complete, the design leaves the analysis block (2.2,

Figure 14) and the Implementation stage is finished. The next section

explains the Specification stage.

Specification. (Block 1, Figure 7) The final stage for discussion

is Specification. It was saved until last because it will be the most

difficult for Super-CAD to automate and will require significant ad-

vances in design automation before it can be developed completely. This

section presents a general treatment of the problem to hopefully point

77

w

the direction for some of the future work.

An important perspective on this problem is the application of

software development techniques. While Super-CAD is a design system for

complete hardware/software packages, the development of the necessary

specifications can benefit greatly from work that has already been done

in software production.

Essentially, the problem for the Specification stage is to transfrom

a relatively simple, unstructured statement of the user's requirements

into a well-structured behavioral specification that can be used by the

Implementation stage. For the MADAM project, that would mean transfor-

ming the requirement to implement the subset of Ada instructions into a

specification describing the overall behavior of the instructions. we

have already seen the need to employ top-down design and structured

design methods (e.g., Refs 57:13U2 and b9:blbj. These principles are

especially important during Specification, where the automated design

process must get off to a good start. If the specification can be

structured to support modularity, the design can be more "technology-

independent", and it will be easier to process through the design sys-em

(Ref 117:261).

This approach requires an orderly, step-by-step process to define

all of the behavior required of the design. Early in the development of

Super-CAD, when the rest of the system is getting set up, this part of

the design will still be done manually. As mentioned earlier, it may be

bypassed entirely by using HDL/RTL inputs to the Implementation st-'^e.

But requiring the designers to transform their requirements into one of

these languages can be a complicated process. It ia me of the ultimate

goals of Super-CAD to overcome that necessity. As the Specif l«. "•«"ion

78

stage evolves and tools are developed, the computer will take over more

of these efforts and begin to work, interactively with the users. In the

progression toward a highly automated stage, the use of artificial in-

telligence principles should be continually explored.

The user should be able to tell the system tnat he wants a design

that accomplishes a particular set of requirements. Super-CAD will

start asking him questions to establish parameters and constraints, make

decisions based on the answers, and store the information in the data-

base. It may ask for clarification for some of the decisions or even

offer a menu of possible options. The goal is to produce a specifica-

tion in a form that can be mapped to implementations at the different

levels of abstraction.

Partitioning. It was previously explained that the specification

must be highly structured and partitionable, to allow the system to

assign subsets. Three different approaches might be used in solving the

partitioning problem. The first is as described above where the user is

responsible. He can input requirements in a hardware description or

register-transfer language that intrinsically imposes a high degree of

partitioning. The second approach is to make it the responsibility of

the high order language used by the overall system. The syntax and

semantics of the language may impose partitioning boundaries as the

user's input is translated. The third approach is to have the program

(Super-CAD) do it. This would be through totally automated algorithms.

Presently, there are no known ways to accomplish such automatic parti-

tioning, so it is a significant area for future work. This is a place

where artificial intelligence may provide some important answers.

Software Techniques. A number of software engineering tools have

79

J

been developed in Che past decade, helping to define different phases of

the software acquisition process. Some of these tools ana techniques

can be applied to the definition of a behavioral specification for a

complete hardware-software system.

Teichroew and Hershey at the University of Michigan have developed a

technique for the "analysis and documentation of requirements and

preparation of functional specifications" (Kef 118:41). It is a CAD

tool for software development that can offer some useful principles for

Super-CAD. Another tool is the Software Engineering Facility ^.SEF)

described earlier (Kef 85). It is really a collection of tools, some of

which provide "automated support" for "requirements definition and

analysis methods" to assist the user to achieve "maximum results with a

minimum of effort" (Ref 85:36-37). An example of a method supported by

SEF is SADT* (Structured Analysis and Design Technique). Douglas Ross

provides a detailed discussion of requirements definition, structured

analysis, and the application of SADT (Refs 119 and 120). The Super-CAD

system can adapt these techniques to the specification of overall sys-

tems.

DeMarco1s text (Ref 71) is an even more detailed description of

structured analysis, and Yourdon and Constantine (Ref 7U) provide an

explanation of structured design. Although neither discussion addresses

automation, many of the techniques are significant. Structured design

is a high level methodology for the design of the whole software system.

It includes structured analysis as one of its tools. Super-CAD should

apply the principles of structured design in solving problems; namely,

analyze the problem, produce a specification, partition it into modules,

trademark, of Softech, Inc., waltham, MA 02154,

80

and develop the modules as "black boxes" (Kef 70:19,21).

Systems Design Approach. The Manufacturing Technology Division of

the Air Force Materials Laboratory at Wright-Patterson Air Force Base

employs a Requirements Engineering Methodology (REM) as part of their

systems design approach to Integrated Computer-Aided Manufacturing

(ICAM). The "systems approach" is a structured one, with a solution to

a problem found by decomposing it into smaller problems solved by the

"development of subsystems" (Ref 122:2-1). Decomposition of system

requirements continues until "each subfunction . . . can be mapped u-

niquely to one subsystem" (Ref 122:2-26). This is further developed by

the 1DEF (ICAM Definition) set of modeling methods. The first method,

IDEF "zero", "traces its origins to SADT" (Ref 123:B.b7). It is a

"structured decomposition—the orderly breaking down of a complex sub-

ject into its constituent parts." With it, the "method of describing a

problem is top-down, modular, hierarcnic, and structured" (Ref

123:B.71). The system presents a different perspective that can enhance

the Specification stage of Super-CAD through future work. (See also

Refs 124 and 128.)

This general discussion of the Specification stage is represented in

Figure 28, which expands block 1. First the behavior of the desired

system is formalized, and then it is partitioned into a specification.

1.1. Figure 29 shows two steps in identifying the required

behavior of the new design. Block 1.1.1 interacts with the user to

receive the requirements and clarify them. It draws on the database to

present options to the user and sends a set of requirements to the next

block. The techniques of structured analysis will be important in this

first block. Block 1.1.2 transforms the requirements into a behavioral

bl

- - ••- • - - »:••- -•- - - - -

1

Requirement

1.1 y

IDENTIFY
SYSTEM

BEHAVIOR

System-
Behavior

1.2 y

PARTITION

BEHAVIOR

Behavioral-
Specification

y

FIG 28. Block 1 - Specification

82

- • • •'

1.1

' Requirement

1.1.1/ \f DATABASE

DESCRIBE JOptions

Inte rac tion/-^ REQUIREMENT

© System-
Requirement

4 1.1.2/ \ t
DEFINE

BEHAVIOR

System-
Behavior

\ f

FIG 29. Block 1.1

83

definition. This is where some of the REM procedures descriDed eariier

can be appiied.

1.2. The next block (.Figure JO) handles the partitioning. First

(1.2.1) the behavior is analyzed to define the partition boundaries.

Then it is divided into subsets (1.2.2). it is assumed for this model

that the suosets are mutually exclusive. As they are divided aiong the

partition lines, portions of the benavior may not fit well into any par-

ticular subset. These leftover elements can be combined into one or

more additional subsets. For example, it is possible that MADAM subset

partitioning might not be strictly according to individual instructions.

Since several have overlapping functions, a better partition might be

according to the common functions, to maintain the mutually exclusive

requirement. In that case, the leftover instruction parts could be com-

bined into other subsets. After this process is complete, tne parti-

tioned behavior then goes to the last block (1.2.3) to be formatted into

a behavioral specification for the Implementation stage.

While this project has addressed the Specification stage in very

general terms, this stage will be a significant part of the Super-CAD

system and should be developed fully by later efforts.

Model Conclusion. This, then, is the Super-CAD model. Again, many

of the specifics are only suggestions for how to develop it, anr* f_n.ure

research may define alternate approaches for certain parts. As stated

earlier, the appendix reproduces the model diagrams, with the blocks

placed in proper numerical order for ease of reference. The next sec-

tion draws some comparisons of this model with the Carnegie-Mellon pro-

ject.

04

-— —•- •-•••-•
 ;..-...... IL

"

1.2

System-
Behavior

1.2.1/ y

DEFINE

BOUNDARIES

Exarained-
Behavior

1.2.2/ v

DIVIDE
INTO

SUBSETS

Partiti
Behav:

Loned-
Lor

1.2..2/ \ I

FORMAT
THE

SPECIFICATION

\

Behavioral-
Specification

f

FIG 30. Block. 1.2

85

MM • -• -....--.... . - -. Li

Comparison (.Rets 2, 12, 16, 17, and 36-49)

The CMU-DA project is currently the most ambitious and well-

documented effort for integrating the digital design process. Many of

the CMU tools have been successfully implemented and are producing en-

couraging results. A comparison between Super-CAD and CMU-DA can demon-

strate similarities and differences to help put the Super-CAD model in

perspective.

Both approaches have the same general goal in mind, but with dif-

ferent ways of accomplishing it. That goal is to provide a high-level

aid to digital designers in the age of very complex VLSI technologies.

The biggest difference between the two is that at the present time

Super-CAD is more a philosophy than a system. While several design aids

to support Super-CAD are under development, most apply to the Realiza-

tion stage. With the emphasis of Super-CAl) on the Implementation stage,

more concrete work needs to be done in that area. CMU-DA, on the other

hand, has developed some effective tools for the Implementation stage.

The major emphasis of CMU-DA, in fact, is automating many of the

steps in design synthesis and offering "the designer a variety of im-

plementations to choose from" (Ref 44:479). Their input is a high-level

"behavioral specification" which really corresponds more closely with

Thomas' Functional level. (Some of the authors, in fact, have called it

a "functional specification" in some of the earlier papers.) The input

is in the ISP language, which means the designer must express his re-

quirements in ISP form.

Super-CAD, as we have seen, attempts to do many of the same things.

It proposes to automate the synthesis process and suggests a methodology

for solving portions of the problem at successive levels of abstraction.

Ob

AD-A118 039

UNCLASSIFIED

AIR FORCE INST OF TECH WRI0HT-PATTERSON AFB OH SCHOO—ETC F/8 9/2
SUPER-CAD: AN INTEGRATED STRUCTURE FOR DESIGN AUTOMATION.(U)
JUN 02 H S CABLE
AFIT/0CS/EE/02J-7 NL

20F^
AD
AH8038 •

1
END

DATE
FILMED

OTIC

Where Super-CAD iterates through the different levels, CHU-DA seems to

go more directly from the input level of abstraction to trie logic real-

ization. CMU-DA essentially ends when it has produced a design that can

be sent to layout programs like MP2D. Although Super-CAD could stop at

that point, it really includes the layout of IC's and FCU's as part of

its integrated effort. At the other end of the spectrum, Super-CAD pro-

poses to automate the Specification stage also. As a result, the de-

signer will not have to understand the intricacies of a design language

like IS? to enter his requirements into the system.

Another difference between the two systems is in the type of im-

plementation chosen. Early in the design process, CMU-ÜA "decides on

the specific style of design to be employed (e.g. , bit-slice micropro-

cessor, MOS microprocessor, SSI/MSI logic)" (Ret 36:94). Super-CAD

basically does not settle on a specific design style, but instead relies

on the libraries of various implementations available that might meet

the requirements. The type of design becomes more formalized as more

implementations are chosen, limiting the additional modules that can be

interfaced to them. A factor both systems snare, however, is in the

flexibility to add new module sets as new designs and technologies

become available.

Overall, the two systems share a number of common goals and tech-

niques. Since CMU-DA has many tools at or near completion, the implemen-

tation of Super-CAD can benefit immensely from these developments.

Summary

This has been a lengthy treatment of what constitutes the Super-CAD

model. In effect, it proposes a method to produce a top-down, struc-

tured design that occurs in three stages. First, the user inputs his

87

-'• —

requirements and assists the computer in developing a behavioral speci-

fication. The computer then proceeds through the three levels of

abstraction seeking existing inplementat ions and calling on the user to

rule on "close" ones. When potential existing solutions are exhausted,

what remains of the specification is made into new circuit designs.

Finally, the hardware and software components of the design are realized

separately and integrated into a complete system design.

The next chapter explains how this model fits into the design au-

tomation research being conducted at AFIT.

I

bo

IV. Super-CAD and AFIT

"An in-depth, integrated, and comprehensive design automation pro-

gram is about to get under way at AFIT." Designed "to meet tne needs of

DOD, the Air Force, and AFIT", it can "make a major impact in the future

of design automation. And the future of design automation will impact

the future of military technology" (Ref 125:10). With these words the

current AFIT design automation program began in late lybl. The previous

decade had seen some important research in early CAD tools, especially

with the CLODS efforts described in Chapter I (Refs 18-24). Hut now,

"as military systems complexities continue to increase", the school is

accelerating its efforts to keep up with rapidly changing technology

(Ref 125:1).

In Ai'IT's view, DOD (the Department of Defense) must assure that

qualified people are available to meet the challenge of the advancing

technology. As an educational and research institution, AFIT can play a

significant role by training Air Force personnel and conducting research

efforts in design automation. "This capablility is enhanced by faculty

members expertly qualified in [DAJ to both guide ItheJ research landj

consult, on a limited basis, for DOD organizations." (Ref 125:1) The

Super-CAD project marks the beginning of these efforts to focus on

design automation.

Plan

It is important to examine AFIT's overall plan and see how Super-CAD

fits into it. AFIT presently views design automation from three per-

spectives. The first is the hierarchical view represented by the three

levels of abstraction that are at the heart of Super-CAD. The second

89

••• —'- • -• - — •••' '•-•• '•* '•

—•

view concerns "the various design automation functions that can assist

digital engineers" in designing systems (e.g., the difference between

hardware and software design). Finally, a third viewpoint highlights,

at the physical level, the differences between 1C and PCB design, where

"there can be distinct differences in complexity." (Ref 125:1-2)

With these perspectives as a basis, AF1T will pursue design automa-

tion along several lines. First, it will develop operational tools to

support its projects, üf prime concern are the "integrated circuit

design courses" which need representative design aids. Also, a number

of other "thesis and class projects", both hardware and software, re-

quire effective automated tools. (Ref 125:2)

Second is research "on new design automation techniques (and valida-

tion of current techniques)". The focus will be on "man-machine inter-

faces" such as "interactive symbolic languages, hardware description

languages," and user-friendly programs. Also important are developing a

database to support system integration, using "heirarchical methods in

design automation", and exploring "suboptimal techniques" as a means to

support "VLSI/VHSIC complexities." (Ref 125:2)

Lastly, faculty "consultation to DÜD organizations" is a continuing

AFIT requirement. With design automation becoming more crucial, the

AFIT research experience will strongly support consultation in this

area. (Ref 125:2,4)

The mechanism through which these goals will be accomplished is an

integrated system incorporating all AFIT DA software, and organized

around a central database system. The "software will reside on a

single, dedicated computer system [to bej called the Design Automation

Hardware System." Efforts are underway to obtain a suitable system that

90

mM n--"tTTiM^n«ii - • .

can be dedicated solely Co the DA research. (Ref 125:4,6)

AF1T will develop software tools that can be directly interfaced to

the database. In addition, "other applications software", either "pub-

lic domain or purchased", "will be interfaced I through] software written

at AFIT." The principles of software engineering will be emphasized

throughout these developments to promote reliability and ease of tes-

ting. (Ref 125:5)

To organize these efforts, the school has developed a five-year

plan. The complete plan will not be presented here, but it is divided

into several phases that will support the overall sequence of tasks

shown in Figure 31. (Ref 123:5) Of course, many of these tasks are

interdisciplinary in nature and do not apply solely to design automa-

tion. For example, in block 7 artificial intelligence can be tied in to

DA, but it is also important in other areas of study such as natural

languages or speech- and pattern-recognition. Thus, while some of the

projects provide direct support of AFIT DA, others constitute related

work with onxy partial applicability.

The first step is to "specify and define system requirements". Then

AFIT will "define and develop the Design Automation Hardware System

land] the data base software capability," while performing "continuing

research in three major areas: automated software design, archi-

tectural-level design automation, and use of artificial intelligence

to solve design automation problems." When the hardware and database

have been set up, integrating the DA development process and software

tools will begin. (Ref 125:5)

Specific Projects

Super-CAD is the framework within which all of the DA software will

91

—•:~—-— : *-• • . . . - ,^M.. ..- > Mil I II '•

1

DESION
AUTOMATION
REQUIREMENTS

2 *^*^ \ 6^^^

HARDWARE

REQUIREMENTS

ARCHITECTURE
SYNTHESIS
RESEARCH

1
, 1

\ f } V HARDWARE

DESIGN ARTIFICIAL
INTELLIGENCE
RESEARCH

k , 1 5 1

HARDWARE

IMPLEMENTATION
DATA BASE

REQUIREMENTS/
SELECTION

3 \
AUTOMATED
SOFTWARE
DESIGN

RESEARCH
7 f

DATA BASE

IMPLEMENTATION

10 *^ 11 ! 1 L2^\^
HARDWARE

DESCRIPTION
LANGUAGE

DEVELOPMENT

LAYOUT
AIDS

DEVELOPMENT

SIMULATOR
DEVELOPMENT

.

FIG 31. AFIT Design Automation Research and
Development Tasks (Ref 125:6)

92

• — • — ,im , - — - - in ai AMi iWi

be integrated. It constitutes a major part of the top block of Figure

31 in defining system requirements. It also contributes to block 6 for

"architectural-level design automation" for VLSI/VHSIC "systems in the

future" (Ref 125:5).

The other AFIT projects currently in progress, as described in Chap-

ters II and III, fit into various blocks of Figure 31. The database

being designed (Ref 65) applies to block 5. The project for automated

software development (Ref 121) is the first research effort supporting

block 8. Block 11 will benefit from the printed circuit ooard routing

project (Ref 91). Also, the research to apply artificial intelligence

to circuit layout (Ref 86) will contribute to both blocks 11 and 7. The

functional simulation project (Ref 115) will produce an important tool

for block 12. Finally, the design of a graphics work station (Ref 58)

will provide a significant input/output capability for the whole system.

Other projects to support the system will be getting underway as more

students enter the program and become interested ir design automation.

A new one, in fact, on dynamic testing for integrated circuits has re-

cently begun (Ref 126).

Recommendations

The various projects just described are a good start for implemen-

ting Super-CAD. A significant amount of work remains to be done,

however. As we shall see in the next chapter, some important follow-on

efforts are required to further define the system and develop some con-

crete solutions to a number of problem areas. In addition, many of the

specific tools under development at AFIT apply to the Realization stage

of design. A concerted effort is needed to develop the Implementation

stage—to define and implement tools that can aid in the actual design

93

of a digital system. The Specification stage requires an even greater

effort to fill in what is currently just a general proposal. Research

can be performed, in conjuction with the Materials Laboratory, to define

it better and address some of the problems.

Once AFIT has implemented a few tools in support of Super-CAD, addi-

tional projects will be required to interface them with each other in

the overall system. A key part of this is the development of the Execu-

tive program. Also, while it is already part of the general AF1T plan,

specific emphasis should be placed on incorporating existing tools into

the system. Valuable CAD tools are available, and many can be useful in

Super-CAD, especially in the earlier stages when many holes will be

present in the system.

Summary

Super-CAD is an integral part of AFIT's plans for work in design

automation. Or, to state it another way, the AFIT DA program—starting

with the current five-year plan—will implement Super-CAD. This major

undertaking has already begun on several fronts. The serious interest

that the school has in DA is perhaps best exemplified by the First Annu-

al Digital System Design Automation Workshop sponsored by AFIT and held

in May, 1982. It is planned as a yearly affair and should grow as the

DA needs and capabilities of AFIT and the Air Force grow.

"1

94

.•.,.• .. _,.,. _-*>

V. Conclusion

The approach to design automation represented by this project has

grown out of the need to integrate many available computer-aided design

tools and develop new ones for the era of highly complex integrated cir-

cuits. In a few short years VLSI and VHSIC chips will contain over a

million devices. Digital designers can no longer efficiently create

designs for such circuits through manual methods. To be effective, the

future design process must rely on integrated sets of tools to assist

the designer in all phases.

As reflected in this report, the design process falls naturally into

three general stages: Specification, Implementation, and Realization

(Figure 1). Also, the design can be represented at three different

levels of abstraction: Behavioral, Functional, and Logical (Figure 2).

If, during the Implementation stage, designs can be described at the

higher levels, fewer details are involved and the design can proceed

faster with less computer resources. Then, in the Realization stage,

building blocks containing the necessary details can be employed to com-

plete the design.

The evolution of design automation has seen a steady increase in

automated tools and some efforts toward supporting design with existing

IC's instead of only the design of new ones. A number of examples have

been used to show these trends, the most notable of which is the

Carnegie-Mellon project. The Super-CAD system proposed here will rely

on much of this earlier work, and seek to extend it significantly.

Ideally, the system will automate all the design stages and produce

designs using existing families of circuits at each level of abstraction

before creating any new circuits at the lowest level.

95

•MMN-

s* m

Super-CAD will be dual-purpose. The overall, "complete" project

will be an integrated system that provides as much design assistance as

possible. (It will never really be "complete," requiring continual

enhancements.) On the way to the overall configuration, however, it

will be a valuable design aid in gathering many effective design tools

together in one place. Even in the advanced stages it will still offer

the user a variety of individual tools to choose from.

Recommendations

Since the overall goal of this project has been a high-level defini-

tion of the system, a significant amount of additional work is required

to advance it toward realization. Many recommendations have already

been stated, in one form or another, in the previous chapters. This

section summarizes those recommendations and suggests additional areas

to be examined in future research.

The Model.

1_. Refine the Super-CAD model as follows:

a_. Address the initial assumptions: mutually exclusive sub-

sets, fixed hardware/software split, and combined data/control. The

model will be enhanced significantly when it can allow for specification

subsets that are not mutually exclusive. Also, the system can be more

effective as a design aid if hardware and software development can be

separated dynamically at a point more suited to the specific design

problem. The third assumption of combining data and control should be

examined as well.

b. Examine alternative ways to expand the process blocks. In

the development of the model, specific decisions have been made to sug-

gest one approach to the system. Other possibilities can be examined

96

•MUT« -i- .-..«—<--. «—.

for suitable alternatives. Also, to better define the system, many of

the process blocks in the Implementation stage should be decomposed to

levels of greater detail.

£. Develop the Specification stage. Specific steps are needed

to define how an input of requirements from a designer can ultimately

produce a set of specifications to be passed on to the Implementation

stage.

d_. Enhance the Implementation stage. Presently, Super-CAD pro-

vides for creating new IC's based only on Logical level specifications.

This can be expanded to include the same capability at the Functional

and Behavioral levels. The "interfacing" block (2.1.4.4) requires

further definition to address how to combine the various subset im-

plementations to work together. This step may cause some of the indi-

vidual implementations to be reworked. Also, a mechanism should be de-

fined for using the problem requirements to help produce test inputs for

the simulation step (block 2.2.1). Finally, more specifics on software

development should be included in this stage.

e_. Examine the Realization stage for ways to refine current

procedures.

2, Add the following capabilities to the model:

a_. User inputs to subset partitioning. When the system is un-

able to produce an adequate number of subset implementations, perhaps the

partitioning is at fault. A method is needed to draw the user interac-

tively into revising the subset partitioning based on his knowledge of

the requirements. This may produce a more effective partitioning and

lead to a successful implementation.

b. Validation. Software Engineering includes the following

97

.1. ii« ml .„ ••Ü

steps,

 -"^ '".. i.i iu..»i •

[

Description

Design

Code

Debug

Verify

•Operational Tests

with the arrows showing validation of earlier steps. An important area

of research would be to determine if Super-CAD can break out of these

constraints and be able to validate the first few steps much earlier,

say by the middle levels.

c^. Testability. Chapter II discussed the importance of testa-

bility in complex digital designs. Further studies are required to

assure that Super-CAD incorporates suitable capabilities in this area.

Tools.

1_. Define and implement languages for the design stages tnat are

compatible with the model. This report has proposed the use of hardware

description and register-transfer languages as a way to input problems

directly into the Implementation stage. However, the system should also

use a high order language that allows easy user inputs to the Specifica-

tion stage. Perhaps Ada can be that language. Further study is re-

quired, and some interesting questions arise. At how low a level in the

model can Ada (or any HOL) be used? Can it be used to describe

hardware? For any process block, in the model that has an input in Ada,

can its output be in Ada? At what level does the answer become "no"?

What are the alternatives to Ada, and is a single language enough? Can

98

, «.*, .1 • — -... >•-«-'

applicable data structures be built in Ada? In fact, for any HOL, how

will the problem be expressed in the language? Some kind of a structure

or specific constructs in the language will be needed so the problem can

be described simply and easily. These constructs can be in the form of

modules accessed by the input. The interactive nature of the system may

mean that Super-CAD questions the user about his problem, perhaps or fers

a menu of options, and activates modules based on the answers. As sta-

ted, this is an area for extensive future work.

2. Investigate the use of methods and techniques like artificial

.Intelligence, group technology, etc., to implement tools for Super-CAD.

Artificial intelligence has been mentioned several times in this report.

Besides logic synthesis and specification development, it can be applied

in many other parts of the model. One project is already underway to

apply it to circuit layout.

_3. Incorporate existing CAD tools. Early work should emphasize

tying together existing CAD programs in support of the Realization

stage. This can provide early benefits to users in having the begin-

nings of an integrated system.

4_. Define and implement tools in support of Super-CAD. The

Implementation stage has received the most attention in this report, but

few automated tools are available to support it. Many must be devel-

oped, from relatively straightforward procedures and subroutines to ra-

ther complex programs. An example of the latter is the operation to ;uap

specification subsets to existing implementations. The other stages,

too, require specific tools to be developed, such as subset parti-

tioned, layout routers for VLSI, simulators, etc. An extensive collec-

tion of design tools is needed to accomplish the tasks proposed in the

99

J

model.

Other.

J^. Investigate database technology for support of Super-CAD. The

database is a significant part of the system. A current project at AFIT

will provide a foundation for development of an effective database sys-

tem.

2. Examine the relevance of computer architectures to the im-

plementation of Super-CAD. Can the system be hardware/software indepen-

dent so it can be easily adapted to many computer systems?

^3. Define and implement the Executive. A primitive Executive

should be developed first, to help interface the initial tools and in-

teract with the user. As more of the system is implemented, the Execu-

tive can be updated to accommodate the additions.

4_. Examine Initialization, Control and Timing, and Communication

in the system. These considerations must be addressed, and perhaps

Super-CAD can interact with the user for help in solving them. However,

though they can be left to the user in tne short-term, they should even-

tually be handled automatically by the system.

_5. Investigate process block interfaces. Work must be done to

assure that the outputs of one process can interface directly with the

next one. The normal flow in the model supports "synthesis" within a

process: to produce a desired output from a given input. However, can

the flow be reversed? Can the "analysis" task be performed by having a

process examine a realization and determine what problem(s) it can solve?

Is the mapping between inputs and outputs always "one-to-one"? If

it is "one-to-several" in the forward direction (synthesis), what is it

in reverse (analysis)? These are challenging questions for future

100

• • .Ltj.-.

research. While Super-CAD proposes to automate the synthesis function,

the important question is whether it can automate the analysis function

as well.

6_. Predict future directions for Super-CAD. While it is diffi-

cult to predict what design aids will be required in the future, the

Super-CAD system includes the flexibility to adapt as necessary to chang-

ing requirements and technologies. Future work with the system should

seek to maintain that flexibility.

Summary. Many areas exist for significant future efforts to im-

plement the Super-CAD system. A tentative time-table is suggested below

for completion of different development phases. If the system receives

support from future AFIT projects, and outside research provides useful

tools, the time-table can be met.

Work should begin now, in 1982, to refine the model in the Implemen-

tation and Realization stages. Also, efforts can begin to integrate

some of the existing CAD programs, through the development of a primi-

tive Executive. This work would extend into the 1983-1984 time-frame.

In the meantime, the first generation of support tools being developed

at AFIT will be complete in 1983. By then an effort to better define

the Specification stage should have begun, and work to describe the

additional capabilities can also commence. At the same time, projects

to design the next generation of support tools—especially for the

Implementation stage—should get underway. Finally, actual development

of the database system should also get started.

By 1985, major portions of the model should be clearly defined, work

on the Specification stage should be progressing, and many tools suppor-

ting the Realization stage should be a part of the system. Gradually,

101

more cools will come into the Implementation stage, and a few will begin

to automate the Specification stage. Between 1985 and 1990 the full

Executive can be in operation, with much of the Super-CAD structure filled

in with design tools. Many of the problems in automated Specifica-

tion can be worked out, also. In the decade of tne 9U's, Super-CAU can

be an effective system for performing many digital design functions,

while moving toward performing most of them.

Final Thoughts

The important thing is that, as the Super-CAD concept evolved out of

trends in design automation, the system itself will evolve through many

phases as more of it is defined and implemented. Gradually it will

shift from merely a collection of computer-aided design tools to a com-

plete design automation package supporting all stages of the digital

design process. Its strength will lie in its adaptability to changing

technologies and changing requirements. It should become a friend of

the user by providing individual tools on the one hand and a complete

design system on the other. It has the potential to become a signifi-

cant part of design automation in the future of VLSI/VriSIC, and beyond.

102

L ^- • -v*» - -

Bibliography

1. Lattin, William W.. et_ al. "A Methodology for VLSI Chip Design,"
Lambda Magazine, 1\ 34-44 (Second Quarter 1981).

2. Thomas, Donald E. and Daniel P. Siewiorek. "Measuring Designer
Performance to Verify Design Automation Systems," IEEE
Transactions on Computers, C-3U (1): 46-61 (January 1981).

3. Reitmeyer, Randolph Jr. "CAD for Military Systems, An Essential
Link, to LSI, VLSI and VHSIC Technology," 18th Design Automation
Conference Proceedings. 3-12. Nashville, June 1981.

4. Rosenberg, Lawrence M. "The Evolution of Design Automation to
Meet the Challenge of VLSI," 17th Design Automation Conference
Proceedings. 3-11. Minneapolis, June 198U.

5. Preiss, Ralph J. "Introduction," Design Automation of Digital
Systems, Volume 1: Theory and Techniques, edited by Melvin A.
Breuer. Englewo"öd" Cliffs, N.J.: Prentice-Hall, Inc., 1972.

6. Raymond, Torrance C. "LSI/VLSI Design Automation," Computer, 14
(7): 89-101 (July 1981).

7. Newton, Arthur R. "Computer-Aided Design of VLSI Circuits,"
Proceedings of the IEEE, 69_ (10): 1189-1199 (October 1981).

8. Mead, Carver and Lynn Conway. Introduction to VLSI Systems.
Reading, Mass.: Addison-Wesley Publishing Co., 1980.

9. Sangiovanni-Vincentelli, Alberto L. "Guest Editorial," IEEE
Transactions on Circuits and Systems, CAS-28 (7): 617 (July 1981)

10. Appleton, Daniel S. "Measure Twice; Cut Once," Datamation,
28: 126-136 (February 1982).

11. Hightower, David. "Can CAD Meet the VLSI Design Problems of the
80's," 16th Design Automation Conference Proceedings. 553. San
Diego, June 19 79.

12. Thomas, Donald E. "The Automatic Synthesis of Digital Systems,"
Proceedings of the IEEE, 69 (10): 1200-1211 (October 1981).

13. Siewiorek, Daniel P. and Larry Kwok-Woon Lai. "Testing of
Digital Systems," Proceedings of the IEEE, 69 (10): 1321-1333
(October 1981).

14. Wiemann, Warren. "CAD System for VLSI," 16th Design Automation
Conference Proceedings. 550. San Diego, June 1979.

15. Rosenberg, Lawrence M. "The Evolution of Design Automation
Toward VLSI," Journal of Digital Systems, V: 301-318 (Winter
1981).

103

 *

16. K.im, Jin H. and Daniel P. Siewiorek. "Issues in IC Implementation
of High Levei, Abstract Designs," 17th Design Automation Con-
ference Proceedings. 85-91. Minneapolis, June 1980.

17. Barbacci, Mario R. "Instruction Set Processor Specifications
for Simulation, Evaluation, and Synthesis," 16th Design Automa-
tion Conference Proceedings. 64-72. San Diego, June 1979.

18. Brown, Thomas J. An Automated Digital Design Language for
CLODS. MS thesis. Wright-Patterson AFB, Ohio: Air Force
Institute of Technology, June 1973. (AD 768 34b)

19. Glastetter, Russell A. Automated Design of Digital Integrated
Circuit Masks. MS thesis. Wright-Patterson AFB, Ohio: Air
Force Institute of Technology, December 1975. (ADA 019 851)

20. Jennings, Lawrence E. The Logic Realization of Automated Design.
MS thesis. Wright-Patterson AFB, Ohio: Air Force Institute of
Technology, March 1973.

21. Kirk, Fred F. Interactive Graphics Interface for Digital Logic
Simulator. MS thesis. Wright-Patterson AFB, Ohio: Air Force
Institute of Technology, March 1973. (AD 760 530)

22. Niederhauser, J. Richard. Digital Logic Simulator. MS thesis.
Wright-Patterson AFB, Ohio: Air Force Institute of Technology,
December 1971. (AD 736 827)

23. Rut ledge, James P. Automatic Reduction of Flow Tables. MS
thesis. Wright-Patterson AFB, Ohio: Air Force Institute of
Technology, December 1970. (AD 880 858)

24. Svisco, Michael J. Computerized Logic-Oriented Design System.
MS thesis. Wright-Patterson AFB, Ohio: Air Force Institute of
Technology, June 1973. (AD 768 349)

25. Cable, Hobart S. II et al. "MADAM": The Micro Ada Machine Project.
Interim and Final Reports of Microprocessor Design project.
Wright-Patterson AFB, Ohio: Air Force Institute of Technology,
June & September 1981.

26. FATCAT Users Manual, Volume III: Logic £, Logic Simulation & Fault
Analysis Program. Westinghouse Electric Corporation, April 1977.

27. FATCAT Users Manual, Volume VII; IC Layout, CONVRT Program.
Westinghouse Electric Corporation, April 1977.

28. Users Guide for the ERADCOM MP2D Program. US Army Electronics
Research and Development Command, Electronics Technology & De-
vices Laboratory.

29. Goldstein, Lawrence H. SCOAP User's Guide: Sandia Controlla-
bility/Observability Analysis Program.
Laboratories, September 1979.

Albuquerque: Sandia

104

J

30. Goldstein, Lawrence H. and Evelyn L. Thigpen. "SCOAP: Sandia
Controllability/Observability Analysis Program," 17th Design
Automation Conference Proceedings. 190-196. Minneapolis, June
1980.

31. Carey, Bernard J. and George F. MacLachlan. "Automated Design
Based upon Microprogrammable Bit Slice Microprocessors," Pro-
ceedings of the Symposium on Design Automation and Microprocessors.
20-24. PiTolTco, Ca., February 19771

32. Matelan, M. N. Automating the Desiga of Dedicated Real Time
Control Systems. PhD dissertation. Livermore, Ca.: Lawrence
Livermore Laboratory, August 1976.

33. Smith, R. J. and M. N. Matelan. "Practical Considerations In
Implementating a Real-Time Controller Design Automation
System," Proceedings of the Symposium on Design Automation and
Microprocessors. 25-27. Palo Alto, Ca., February 1977.

34. Ross, Alan Albert. Computer Aided Design of Microprocessor-
Based Controllers. PhD dissertation. Davis, Ca.: University of
California, June 197«.

35. Ross, Alan and Herschel H. Loomis, Jr. "Computer Aided Design
of Microprocessor-Based Systems," 15th Design Automation Con-
ference Proceedings. 227-230. Las Vegas, June 1978.

36. Hafer, Louis J. and Alice C. Parker. "Automated Synthesis of
Digital Hardware," IEEE Transactions on Computers, C-31 (2):
93-109 (February 1982).

37. Hafer, Louis J. and Alice C. Parker. "Register-Transfer Level
Digital Design Automation: The Allocation Process," 15th Design
Automation Conference Proceedings. 213-219. Las Vegas, June 1978.

38. Parker, A. £t_ al_. "The CMU Design Automation System: An Example
of Automated Data Path Design," 16th Design Automation Conference
Proceedings. 73-80. San Diego, June 1979.

39. Siewiorek, Dan. "Introducing ISP," Computer, 7_ (12): 39-41
(December 1974).

40. Barbacci, Mario R. "Instruction Set Processor Specifications
(ISPS): The Notation and Its Applications," IEEE Transactions
on Computers, C-30 (1): 24-40 (January 1981).

, 41. Barbacci, Mario et_ al_. "An architectural research facility—
ISP descriptions, simulation, data collection," Proceedings,
1977 National Computer Conference. lbl-173. Dallas, June 1977.

42. Thomas, D. E. and G. W. Leive. "A Technology Relative Design
System," Proceedings, IEEE International Conference on Circuits
and Computers. 1052-1055. Port Chester, N.Y., October 1980.

105

U^^^^m^^^^^^^BH^fl J

43. Director, Stephen If. et_ al_. "A Design Methodology and Computer
Aids tor Digital VLSI Systems," IEEE Transactions on Circuits and
Systems, CAS-28 (7): 634-645 (July 19"8"TX

44. Leive, C. W. and D. E. Thomas. "A Technology Relative Logic
Synthesis and Module Selection System," 18th Design Automation
Conference Proceedings. 479-485. Nashville, June 1981.

45. Tseng, Chia-Jeng and Daniel P. Siewiorek. "The Modeling and
Synthesis of Bus Systems," 18th Design Automation Conference
Proceedings. 471-478. Nashville, June 1981.

4b. Eastman, Charles M. "System Facilities for CAD Databases," 17th
Design Automation Conference Proceedings. 5u-56. Minneapolis,
June 19W.

47. McFarland, Michael C. "On Proving the Correctness of Optimizing
Transformations in a Digital Design Automation System," 18th
Design Automation Conference Proceedings. 90-97. Nashville, June
1981.

48. Snow, Edward A. et_ al. "A Technology-Relative Computer-Aided
Design System: Abstract Representations, Transformations, and
Design Tradeoffs," 15th Design Automation Conference Proceedings.
220-226. Las Vegas, June 1978.

•
49. Thomas, D. E. and D. P. Siewiorek. "Measuring Designer

Performance to Verify Design Automation Systems," 14th Design
Automation Conference Proceedings. 411-418. New Orleans,
June 1977.

50. Matelan, M. N. "Automating the Design of Microprocessor-Based
Real Time Control Systems," 13th Design Automation Conference Pro-
ceedings. 462-469. San Francisco, June 1976.

51. Breuer, Melvin A. et al. "A Survey of the State of the Art of
Design Automation," Computer, 14 (10): 58-75 (October 1981).

52. Daniel, M. E. and C. W. Gwyn. "Hierarchical VLSI Circuit Design,"
Proceedings, IEEE International Conference on Circuits and
ComputersT" 92-97. Port Chester, N.Y. , October 1980.

53. Waxman, R. "VLSI - A Design Challenge," lbth Design Automation
Conference Proceedings. 546-547. San Diego, June 1979.

<
54. Losleben, Paul. "Data Structures, Data Base, and File Manage-

0 ment," Digital System Design Automation: Languages, Simulation _&
Data Base, edited by Melvin A. Breuer. Woodland Hills, Ca.:
Computer Science Press, Inc. 1975.

55. Brayton, Robert K. et al. "A Survey of Optimization Techniques for
Integrated-Circuit Design," Proceedings of the IEEE, 69 (10):
1334-1362 (October 1981).

106

MM

5b. Kubin, Krank. "A Logic Design Data Entry System," Proceedings,
IEEE International Conference on Circuits and Computers. 1U7-11U.
Port Chester, N.Y. , October \1W.

57. Soukup, Jiri. "Circuit Layout," Proceedings of tne IEEE, b9 (10):
1281-1304 (October 1981).

58. Scott, Donna E. "Design Automation Graphics Work Station Design."
Unpublished MS thesis. Wright-Patterson AFB, Ohio: Air Force
Institute of Technology, 1982.

59. Eastman, Charles M. "Database Facilities for Engineering Design,"
Proceedings of the IEEE, b9, (10): 1249-1263 (October 1981).

bU. Ciampi, P. L. et al. "Control and Integration of a CAD Data Base,"'
13th Design Automation Conference Proceedings. 285-289. San
Francisco, June 1976.

61. Ciampi, P. L. and J. D. Nash. "Concepts in CAD Data Base Struc-
tures," 13th Design Automation Conference Proceedings. 290-294.
San Franscisco, June 1976.

62. Foster, J. C. "The Evolution of an Integration Data Base," 12th
Design Automation Conference Proceedings. 394-398. Boston, June
1975.

63. Korenjak, A. J. and A. H. Teger. "An Integrated CAD Data Base
System," 12th Design Automation Conference Proceedings. 399-406.
Boston, June 1975.

64. Brinton, James B. "CHAS Seeks Title of Global CAD System,"
Electronics, 54 (3): 100-104 (February 10, 1981).

65. Tebo, Michael. "Design of Conceptual Level Data Base to Support
AFIT Design Automation Facility." Unpublished MS thesis. Wright-
Patterson AFB, Ohio: Air Force Institute of Technology, 1982.

66. Dietmeyer, Donald L. and James R. Duley. "Register Transfer
Languages and Their Translation," Digital System Design Automation:
Languages, Simulation ^ Data Base, edited by Melvin A. Breuer.
Woodland Hills, Ca.: Computer Science Press, Inc., 1975.

67. Dewey, Al. Digital Eletronics Engineer, Air Force Avionics Labora-
tory (informal briefing on Hardware Development Language for
VHSIC). Wright-Patterson AFB, Ohio, 4 February 1982.

68. Borky, John M. Program Element Monitor for VHSIC at Air Force
Systems Command (briefing to students on VHSIC). Air Force
Institute of Technology, Wright-Patterson AFB, Ohio, 14
January 1982.

69. Trimberger, Stephen £t al_. "A Structured Design Methodology and
Associated Software Tools," IEEE Transactions on Circuits and
Systems, CAS-28 (7): 618-b34~TTu"ly 1981).

107

•— —• --' •- '— •'- • •- ••--•-•• - '••• •- - >.•—->-• *.*m~±L~±M

70. Yourdon, Edward and Larry L. Constantine. Structured Design.
New York: Yourdon Press, 1978.

71. DeMarco, Tom. Structured Analysis and System Specification.
Forward by P. J. Plauger. New York: Yourdon Inc., 1978.

72. Tobias, James R. "LSI/VLSI Building Blocks," Computer, 14 (8):
83-101 (August 1981).

73. Gray, J. P. "Introduction to Silicon Compilation," lbth
Design Automation Conference Proceedings. 305-309. San Diego,
June 1979":

74. Johannsen, Dave. "Bristle Blocks: A Silicon Compiler," lbth
Design Automation Conference Proceedings. 31U-313. San Diego,
June 1979.

75. Newton, Arthur Richard et aJ^. "Design Aids for VLSI: The
Berkeley Perspective," IEEE Transactions on Circuits and Systems,
CAS-28 (7): 666-680 (July 1981).

76. Dutton, Robert W. "Stanford Overview in VLSI Research," IEEE
Transactions on Circuits and Systems, CAS-28 (7): 654-o65 (July
1981).

77. Herrick, Willaim V. and James R. Sims. "A Successful Automated
IC Design System," 13th Design Automation Conference Proceedings.
74-78. San Francisco, June 1976.

78. Sansen, Willy et al. "Design Automation Software Towards
i MOS/VLSI," Proceedings, IEEE International Conference on Circuits

and Computers. 98-102. Port Chester, N.Y. , October 1980.

79. Groeger, Hans-J. "A New Approach to Structural Partitioning of
Computer Logic," 12th Design Automation Conference Proceedings.
378-383. Boston, June 1975.

80. Persky, G. et al. "LTX - A System for the Directed Automatic
Design of LSI Circuits," 13th Design Automation Conference Pro-
ceedings. 399-407. San Francisco, June 1976.

81. Boehm, Barry W. "Software Engineering," IEEE Transactions on
Computers, C-25 (12): 1226-1240 (December 1976).

82. Smith, Robert J. II. "Software Engineering Techniques in Design
Automation—A Tutorial," 14th Design Automation Conference Pro-
ceedings. 495-507. New Orleans, June 1977.

83. Zelkowitz, Marvin V. "Perspectives on Software Engineering,"
Computing Surveys, _10 (2): 197-215 (June 1978).

84. Myers, Ware. "The Need for Software Engineering," Computer,
_H (2): 12-24 (February 1978).

108

85. Irvine, C. A. and Jotin W. Brackett. "Automated Software Engi-
neering Through Structured Data Management," IEEE Transactions on
Software Engineering, SE-3 (1): 34-40 (January [177T.

86. Lynch, Robert J. "An Application of Artificial Intelligence to
the Circuit Layout Problem." Unpublished MS thesis. Wright-
Patterson AFB, Ohio: Air Force Institute of Technology, 1962.

87. Welt, Martin J
12th De si,
June 1975

"NOMAD: A Printed Wiring Board Layout System,"
12th Design Automation Conference Proceedings. 152—1bl. Boston,

'

88. Shupe, Charles F. "Automatic Component Placement in the NOMAD
System," 12th Design Automation Conference Proceedings. 162-172.
Boston, June 1975.

89. Magnuson, W. G. Jr. "DASLL - An Automatic Printed Circuit Board
Layout System," Proceedings, IEEE International Conference on
Circuits and Computers. 758-763. Port Chester, S.Y., October
1980.

90. Mori, H. et al. "BRAIN: An Advanced Interactive Layout Design
System for Printed Wiring Boards," Proceedings, IEEE International
Conference on Circuits and Computers. 754-757. Port Chester,
N.Y., October 1980.

91. Chesley, Fred T. "An Automated Design in Printed Circuit Board
Routing." Unpublished MS thesis. Wright-Patterson AFB, Ohio:
Air Force Institute of Technology, 1982.

V2. Feller, Albert et_ al_. "Standard Cell Approach for Generating
Custom CMOS/SOS Devices Using a Fully Automatic Layout Program,"
Proceedings, IEEE International Conference on Circuits and
Computers. 311-314. Port Chester, N.Y., October 1980.

93. Gardner, Robert J. "State of the Implementation of SARA," Pro-
ceedings of the Symposium or. Design Automation and Microprocessors.
60-62. Palo Alto, Ca. , Fe"bruary 1977.

94. Gardner, Robert J. "Multi-Level Modeling in SARA," Proceedings
of the Symposium on Design Automation and Microprocessors. 63-66.
Palo Al to, Ca., February 197 7.

95. Razouk, Rami R. and Gerald Estrin. "The Graph Model of Behavior
Simulator," Proceedings of the Symposium on Design Automation and
Microprocessors. 67-76. Palo Alto, Ca., February 1977.

96. Overman, William T. and Gerald Estrin. "Developing a SARA Building
Block - The 8080," Proceedings of the Symposium on Design Auto-
mation and Microprocessors. 77-86. Palo Alto, Ca., February 1977.

97. McWilliams, Thomas M. and Lawrence C. Widdoes, Jr. "SCALD:
Structured Computer-Aided Logic Design," 15th Design Automation
Conference Proceedings. 271-277. Las Vegas, June 1978.

109

— '• •"• •-•- • - -

96. vanCleemput, W. M. "An Hierarchical Language tor the Structural
Description of Digital Systems," 14th Design Automation Conference
Proceedings. 377-385. New Orleans, June 1977"^

99. vanCleemput, W. M. "Computer Hardware Description Languages and
Their Applications," lbth Design Automation Conference Pro-
ceedings. 554-560. San Diego, June 1979.

100. Chu, Yaohan. "Concepts of a Microcomputer Design Language,"
lbth Design Automation Conference Proceedings. 45-52. San Diego,
June i979.

101. Friedman, Theodore D. and Sih-Chin Yang. "Methods Used in an
Automatic Logic Design Generator (ALERT)," IEEE Transactions
on Computers, C-18 (7): 593-614 (July 1969).

102. Zimmerman, G. "The MIMOLA Design System: A Computer Aided Digital
Processor Design Method," lbth Design Automation Conference
Proceedings. 53-58. San Diego, June 1979.

103. Marwedal, Peter. "The MIMOLA Design System: Detailed Description
of the Software System," 16th Design Automation Conference
Proceedings. 59-63. San Diego, June 1979.

104. Darringer, John A. et al, "Experiments in Logic Synthesis,"
Proceedings, IEEE International Conference on Circuits and
ComputersT" iV^lSTk. Port Chester, N.Y., October 1980.

105. Darringer, John A. and William H. Joyner, Jr. "A New Look at
Logic Synthesis," 17th Design Automation Conference Proceedings.
543-549. Minneapolis, June 1980.

106. Mate, Levente L. et_ al_. "CARS: A Computer Aid for Recursive
Synthesis," Proceedings, IEEE International Conference on Circuits
and Computers. 529-531. Port Chester, N.Y., October 1980.

107. Hachtel, Gary D. and Alberto L. Sangiovanni-Vincentelli. "A
Survey of Third-Generation Simulation Techniques," Proceedings of
the IEEE, 69 (10): 1264-1280 (October 1981).

108. Reynaert, Ph. et al. "DIANA: A Mixed-Mode Simulator with a
Hardware Description Language for Hierarchical Design of VLSI,"
Proceedings, IEEE International Conference on Circuits and
Computers. 356-360. Port Chester, N.Y., October 1980.

109. Hill, Dwight and William vanCleemput. "SABLE: A Tool for
Generating Structured, Multi-Level Simulations," 16th Design
Automation Conference Proceedings. 272-279. San Diego, June
1979.

110. Chen, Robert C. and James E. Coffman. "Multi-Sim, A Dynamic
Multi-Level Simulator, 15th Design Automation Conference
Proceedings. 386-391. Las Vegas, June 1978.

110

111. Sasaki, Tohru e_t al. "MIXS: A Mixed Level Simulator for Large
Digital System Logic Verification," 17th Design Automation
Conference Proceedings. 626-633. Minneapolis, June 1980.

112. Agrawal, V. D. et al_. "A Mixed-Mode Simulator," 17th
Design Automation Conference Proceedings. bld-625.
Minneapolis, June 1980.

113. Newton, A. Richard. "Techniques for the Simulation of Large-
Scale Integrated Circuits," IEEE Transactions on Circuits and
Systems, CAS-26 (9): 741-749 (September 1979).

114. Scheff, Benson H. and Stephen P. Young. "Gate-Level Logic
Simulation," Design Automation of Digital Systems, Volume 1:
Theory and Techniques, edited by Melvin A. Breuer. Englewood
Cliffs, N.J.: Prentice-Hall, Inc., 19/2.

115. Miles, Max. "The Application of Multiprocessor Architecture
Based on the iAPX 432 to Functional Simulation as Part of
Digital Design Automation." Unpublished MS thesis. Wright-
Patterson AFB, Ohio: Air Force Institute of Technology, 1982.

116. Evangelisti, C. J. et al, "Designing with LCD: Language for
Computer Design," 14th Design Automation Conference Proceedings,
369-376. New Orleans, June 1977.

117. Bechtolsheitn, Andreas. "Interactive Specification of Struc-
tured Designs," 15th Design Automation Conference Proceedings.
261-263. Las Vegas, June 1978.

lib. Teichroew, Daniel and Ernest A. Hershey, III. "PSL/PSA: A
Computer-Aided Technique for Structured Documentation and
Analysis of Information Processing Systems," IEEE Transactions
on Software Engineering, SE-3 (1): 41-48 (January 1977).

119. Ross, Douglas T. and Kenneth E. Schoman, Jr. "Structured
Analysis for Requirements Definition," IEEE Transactions on
Software Engineering, SE-3 (1): 6-15 (January 1977).

120. Ross Douglas T. "Structured Analysis (SA): A Language for
Communicating Ideas," IEEE Transctions on Software Engineering,
SE-3 (1): 16-34 (January~T977X

121. Hadfield, Steven M. "An Automated Software Development
Environment." Unpublished MS thesis. Wright-Patterson AFB,
Ohio: Air Force Institute of Technology, 1982.

122. Alford, M. W. et_ al_. Formal Decomposition Applied to
Axiomatic Requirements Engineering. Technical Report.
Huntsville, Ala.: TRW Defense and Space Systems Group,
December 1979.

123. ICAM Industry Days, Volume 2, Technical Summary. St. Louis,
September 1980. ~

111

 - - • - -^-~- ^ j, . ,

124. Sixth Annual 1CAM Industry Days Proceedings. New Orleans,
January 1982.

125. Carter, Harold W. "A Plan for Digital Systems Design
Automation at the Air Force Institute of Technology," planning
document, Department of Electrical Engineering, Air Force
Institute of Technology, Wright-Patterson AFB, Ohio, November
1981.

12b. Young, David. "A Dynamic Test Model for Integrated Circuits
based on Static Methods." Unpublished MS thesis. Wright-
Patterson AFB, Ohio: Air Force Institute of Technology, 1982.

127. Ludewig, Jochen. "Computer-Aided Specification of Process
Control Systems," Computer, 15 (5): 12-20 (May 1962).

128. Computer, L5 (5): 10-59 (May 1982). Special Issue on
Application-Oriented Specifications for Software Systems.

129. Garlington, Alan R. Preliminary Design ana Implementation
of an Aaa Pseudo-Machine. MS thesis. Wright-Patterson AFB,
Ohio: Air Force Institute of Technology, March 1981.

130. Hayes, John P. Computer Architecture and Organization. New
York: McGraw-Hill Book. Co., 1978.

131. Sippl , Charles J. and Roger J. Sippl. Computer Dictionary and
Handbook. Indianapolis: Howard W. Sams & Co., Inc., 198Ü.

132. Korn, Granino A. Microprocessors and Small Digital Computer
Systems for Engineers and Scientists. New York: McGraw-Hill
Book Co., 197 7.

General References and Recommended Reading

133. Breuer, Melvin A., ed. Design Automation of Digital Systems,
Volume 1: Theo"y and Techniques. Englewood Cliffs, N.J.:
Prentice-Hall, Inc., 1972.

134. Breuer, Melvin A., ed. Digital System Design Automation:
Languages, Simulation & Data Base. Woodland Hills, Ca.:
Computer Science Press, Inc., 1975.

135. Computer, _7_ (12): 18-51 (December 1974). Special Issue on
Hardware Description Languages.

136. Dutton, Robert W. and Stephen E. Hansen. "Process Modeling
of Integrated Circuit Device Technology," Proceedings of the IEEE,
69 (10): 1305-1320 (October 1981).

137. IEEE Transactions on Software Engineering, SE-3 (1): 6-84
(January 1977). Special Issue on Requirement Analysis.

112

—-
 - ••

—

138. Journal of Digital Systems, V: 299-451 (Winter 1981). Special
Issue on Design Automation.

139. Kawano, Ietoshi e£ al_. "The Design of a Data Base Organization
for an Electronic Equipment DA System," 15th Design Automation
Conference Proceedings. 167-175. Las Vegas, June 1978.

140. Mano, M. Morris. Digital Logic and Computer Design.
Englewood Cliffs, W. J.: Prentice^all, Inc., 19/9.

141. Miller, G. A. "The Magical Number Seven, Plus or Minus Two:
Some Limits on Our Capacity for Processing Information,"
Psychology Review, 63 (.3): 81-97 (March 1956).

142. Proceedings, IEEE International Conference on Circuits and
Computers. Port Chester, N.Y., October 1980. Numerous papers
on VLSI and Design Automation.

143. Proceedings of the Symposium on Design Automation and Micro-
processors. Palo Alto, Ca., February 1977.

144. Proceedings of the IEEE, 69 (10): 1187-1362 (October 1981).
Special Issue on Computer-Aided Design.

145. Siewiorek, Dan. "Introducing PMS," Computer, _7_ (12): 42-44
(December 1974).

146. 12th to 18th Design Automation Conference Proceedings. 1975-
1981. (Called Design Automation Workshops prior to that.)
Many pertinent papers.

147. Westerberg, Arthur W. "Computer-Aided Design Tools in
Chemical Engineering Process Design," Proceedings of the IEEE,
69 (10): 1232-1239 (October 1981).

113

tmimim «* . - iM.irfi |

Appendix

COMPENDIUM OF MODEL D1AGAMS

114

- — • •'•'•'•» '- - -• — - -—— •-'• —- • -• - ' •» - —-—— •*-—-»—• ----•'- <-<

•T

>

Requirement

r

PRODUCE

THE

DESIGN

^

Total-
Sy stem-
Design

f

Requirement

1 V

DEVELOP

BEHAVIORAL
SPECIFICATION

Behavioral-
Specification

2 V

PRODUCE
DESIGN

IMPLEMENTATION

Detailed-
Design

3 V
COMPLETE

DESIGN
REALIZATION

1

Total-
Systea-
Design

Overall Super-CAD Process Main Design Stages

115

• _***. . H ._ UJ--

—

1

Requirement

1.1 \(

IDENTIFY
SYSTEM

BEHAVIOR

Systen-
Behavior

1.2 ^ 1
PARTITION

BEHAVIOR

Behavioral-
Specification

\ '

Block 1

116

^^Mfchnw^fcatim i iiiitn ii •

1.1

Requirement

1.14/ V DATABASE

DESCRIBE J Options

Interaction^"^" REQUIREMENT

(USSR) Systei*-
Requiremsnt

* 1.1.2/ \i

DEFINE

BEHAVIOR

System-
Behavior

1 t

Block,1.1

117

1.2

System-
Behavior

1.2.1/ \(

DEFINE

•

BOUNDARIES

.
Examined-
Behavior

1.2.2/ y

DIVIDE
INTO

SUBSETS

Parti ti
Behav:

Loned-
Lor

1.2.3/ \ '

FORMAT
THE

SPECIFICAnON

\

Behavioral-
Specification

t

Block 1.2

118

Mini , ill Hil». ät 11 ,-• „

—

2.1

Behavioral-
Specification

DEVELOP

THE
DESIGN

2.2

Detailed-
Design

ANALYZE

THE
DESIGN

Acceptable-
Detailed-

Design

Block 2

119

hl

Behavioral-
Speoifioation

• •

IBS
(Subsets),

s^ IMPLEMENT ^«^
^ COMPLETELr AT ^s
K. BEHAVIORAL LEVEL ^
tioJK. \ >r

YES
.(Whole Set)

Complete-Behavioral
5ubs e t- Impl e ne n t*

Complete-Behayioral-
Level-Implementa-

tion

^a (Partial Subsets)

Leftover-
Benavioral-Snbsets

"
2.1.2/S.

TBS
(Subsets),

S^ IMPLEMBNT^\
^ COMPLETELT AT ^S

TES
JVhole Set)

*\ FUNCTION
Complete- ^v.
Functional- .

Subset- >v
Implementation

AL LEVEL S
i s' Coaplet*-

s' Functional-
s' Level-
ijO Implementation

(Partial
Subsets)

2.1.3 i

Leftover-
Func tional-Subse ts

•

IMPLEMENT AT

LOGICAL LEVEL

Complete-Logical-
Level- Implementation

 »3 '*

 •

2.1.* -

M

2.1.5/ i '

INTERFACE THE COMPLEX THE

IMPLEMENTATIONS IMPLEMENTATION

"

Detailed-
Design

Block 2.1

120

-k-~- — ••••—..-• - • •— •- • - ••

2.1.1

2.1.1.

Behavioral-
Specification

IMPLEMENT
WHOLE SET

T

»I

YES

Complete-Behavioral-
Level- Implementation

2.1.1.2

Behavioral-
Specification

YES (All)
Complete-Behavioräl-
Subset- Implementation

YES
(Partial)

Leftover-
Behavioral-
Subsets

Block 2.1.1

121

^ - •*- — --

' —

2.1.1.1

.k

Revised-
Behavioral-
Specification

MODIFY
BEHAVIORAL

SPECIF CATION

Inter-
actior

USER

.2.

Behavioral-
Specification

LIBRARY

Chip-Families-
«Se-Behavior

YES

Behavioral-
Specification-
Comparison

Complete-
Behavioral-
Level-
Inplementation

YES yf EXISTING
IMPLEMENTATION

CLOSE ^^^Behavioral-
Close- \7/^^ Specification

Behavioral-
Implementation

Int.

CLOSE
j^S^TMPLEMENTATIONVäß-
3 ' ~ APPLY

?

->r<

Behavioral-
Implementation

Behavioral-
Specification

Block 2.1.1.1

122

—— •ii um ii i ,.._..?.,

1
M-t-2

B«luvlonl-
Sptclficatlon

I TOR 1-1. n
' ASSIGN SUBSETS!

.16

5 Inl* ud-b«b«T io r&l-
5ub«»t»

1*1
— Ind«x»d-B»fc*vlorml-SuOMt»

Chlp-Puiliaa-
i-bornvlor ,

SELECT
SUBSET 1

IDENTIFY
SUBSETS

ireffTED

BahATloral-
5ubMt-l

Uon

SAVE SUBSET ll
IMPLEMENTATION J

NOTIFY
USER

SAVE MODIFIED
SUBSET i

ntPLEKEKTAnON

-*•<-

.18

l«-i • 1

YES

Leftovar-
3«h»Tlor»l-

.»ubsets

"oarpleta-3«h»Tior»I-jubs«t-lBpleaentatloi:

Block 2.1.1.2

123

 - '

2.1.2 Leftover-
Behavioral-

2.1.2.1/ A Subsets

TRANSLATE TO
FUNCTIONAL

SPECIFICATION

2.1.2.2

Functional-
Specification

YES
Complete-Functional-
Level-Implementation

2.1.2.3

Functional-
Specification

YES (All)

Complete-Functional-
Subset- Implementation

YES
(Partial) Leftover-

Functional-
Subsets

Block 2.1.2

124

- --• J - *LA

2.1.2.2 Functional-
Specification

JÄBBAEL
Chip-Families-

&-Functions

YES
Complete-

Functional-
Level-
Implementation

EXISTING
[MPLEMENTATION

CLOSE ^^unctional-
T^^ Specification

CLOSE
J^^IMPLEMENTATION

Close-\^ APPLY
Functional- ^s^ 7

Implementation
Functional-

Specification

Block 2.1.2.2

125

-- -

2.1.2-3
Functional-

"oeclflcation

FOR 1»1, n
ASSIOH SUBSETS

.2

Indexed- Func tlonal-
Subseta

.16
IDSNTTFT
SUBSETS

IMPACTED

Chlp-Famllles-
1-Function»

LIBRARY

1*1

I Z5&ü53-FtBMtldaal>3ubMt4

SE^fcCT
SUBSET 1

Functional-
Subset- 1

SAVE SUBSET I
IMPLEMENTATIONI

SAVE
SUBSET

Modified-Subaet-
1- lapleaentatlon

SAVE MODIFIED
SUBSET 1

vmzaMwaat
.18

l«-i •

YES

Leftove
Functional

Subsets

Complete- Functional-Subset-lap: »«entation

Block 2.1.2.3

126

— .» M

2.1Q Leftover-
Functional-

2.1.3.1/^ Subsets

TRANSLATE TO
LOGICAL

SPECIFICATION

2.1.3.2

IMPLEMENT
WHOLE SET

?

N0V

Logical-
Specification

•YES

Comple te-Logical-
Level- Implementation

2.I.3.3I

Logical-
Specification

IMPLEMENT
SUBSETS

T

H0V

YES (All)

Complete-Logical-
Subset- Implementation

(Partial) Leftover-
2.1.3.4 \/ Logical-Subsets

SYNTHESIZE
LOGIC
DESIGN

Logic-
Design

S»r«£-

Complete-
Logical-Level-

Impleraentation

Block 2.1.3

127

-- _ I . «fcu..l

2.1.3.2
Logical-
Specification

Revised-
Logical-
Specification

LIBRARY
Chip-Families-

&-Logic

MODIFY
LOGICAL

SPECIFICATION

YES

Logical-
Specification-
Comparison

EXISTING
IMPLEMENTATION

CLOSE ^S Logical-
^r Specification

Close-
Logical-

Istplementation

Complete-
Logical-
Level-

Implementation

CLOSE
ImPLEMENTATION^^0-

Close*^ APPLY
Logieal-^\?

Implementation
Logical-

Specification

Block 2.1.3.2

128

2.1- -j- 'S

Logical-
Specification

FOB 1*1, a
ASSIGN SUBSETS

.16

.2

Indexed- Logical-
Subsete

1*1

Chlp-Faailies-
*-Logic

Indexed-Logical-Subaata

iEENTirr
SUBSETS

IMPACTED
Subaet-i-
Inplenenta-

tion

SAVE SUBSET i
IMPLEMENTATION

SAVE
SUBSET i

Modlfled-SubseV
1- Inpl—ntation

SAVE MODIFIED
SUBSET 1

IMPLEMENTATION

JES

Leftover^
Logical-

Subaata

.18

i«-l • 1

Co«plete-Logieal-Subeet-I«ple»entetlon

Block 2.1.3.3

129

2.1.3.4

Leftover-
Logical-
Subsets

•1 W

PARTITION
LOGICAL
SUBSETS

Partitioned-
Logical-
Subsets

• 2 \l CELL LIBRARY

J Building-
y Blocks SYNTHESIZE

LOGIC
DESIGN

Logic-
Design

3 \ '

Logic-
^4 Design

SAVE
DESIGN

DATABASE

[Contro 1]
\ '

Block 2.1.3.A

130

2.1.Jf

Implementation

"WHOLE"
^IMPLEMENTATION

COMPLETE THE
IMPLEMENTATION

Detailed-
Design

>i<

Control—
No Data]

LOCATE THE
IMPLEMENTATIONS

.4

Implemen-
tations

INTERFACE
SEPARATE

IMPLEMENTATIONS

Detailed-
Design

Block 2.1.4

131

2.2

2.2.3/

MODIFY
DESIGN

2.2.1/ \[

Detailed-
Design

RUN
MULTI-LEVEL
SIMULATIONS

Interaction Simulation-
Re suits

YES

Unacceptable-
Detailed- Design

Acceptable-
Detailed-Design

Block 2.2

132

J

mm

3

Acceptable-
Detailed-
Design

3.1 v

PARTITION

THE
DESIGN

Design-
Blocks

3-2 v

LAYOUT/CODE

THE
DESIGN

Total-
System-
Design

Y

Block 3

133

•" ' - •

H
Acceptable-
Detailed-
Design

3.1.1/ „

PARTIHON

INTO
BLOCKS

3.1.2/ >

Partitioned-
Blocks

(

SEPARATE
HARDWARE &
SOFTWARE
BLOCKS

>

Design-
Blocks

t

Block 3.1

134

. . __:

r —

3-2
Design-

Blocks

YES

3-2.2 |

Hardware
Blocks

Software-
Blocks

3.2.3 ±

PRODUCE
IC LAYOUTS

IC-
Characteristics

 >r<

Firmware-
Characteristics

PRODUCE
SOFTWARE &
FIRMWARE

Software/
Firmware-
Design

3.3-» I
PRODUCE

PCB LAYOUT

Hardware-
Design
 >r<-

3.2.3/
JOIN HARDWARE
AND SOFTWARE

DESIGNS

Total-
System-
Design

Block 3.2

135

L. •• •

3.2.2 Hardware-
Blocks

NO YES
Existing-
IC-Blocks

Nev-IC-
Blocks

Interaction

LIBRARY •5/
Existing-
IC-Physical-
Characteristics

I
CATALOG
PHYSICAL

CHARACTERISTICS

Y
GENERATE IC

PLACEMENT
& ROUTING

•21
Layout

\f

REFINE
LAYOUT

•y y
Final-

Layout

GENERATE
PLOTTER DIAGRAM

& MASK SET

New-IC-
Characteristics

IC-
Characteristics

Block 3.2.2

136

M» P. I li - -

—

3-2.3

YES

•1/

Software-
Blocks

CODE AND
DEBUG

SOFTWARE

•2/

Coded-
Software

TEST AND
INTEGRATE
SOFTWARE

•It
Tested-
Software

FIRMWARE.

a
Firmware-

Blocks

PRODUCE
FIRMWARE

DESIGN

'SOFTWARE
OR

-'IRMWARh

Inter-1

action
(USER)

SOFTWARE

jing-
Software-
Blocks

Finnware-
Design

Firmware-
Characteristics

Firmware-
Blocks

•>

!•

.6/
INTEGRATE
FIRMWARE

k SOFTWARE
OPERATIONS

Software/Firmware-
Design

Block 3.2.3

137

... _~- J

r i^mi^m

3.2.J*
Hardware /Fimware-
Characteri sties

.1/ M

JOIN IC
CHARACTERISTICS

IC-
Gharacteristies

•2/ V

GENERATE
PCB PLACEMENT

& ROUTING

PCB-
Layout

•2/ y

REFINE

Inte rac tion S**

(USER)

1

LAYOUT

•V ^

Final-
PCB-La;

1
yrout

GENERATE
PLOTTER DIAGRAM

& PCB
MASK SET

\

Hardwan
Design

1

9-

Block 3.2.4

138

«•

-

VITA

Hobart S. Cable, II, was born in Canton, Ohio, on 28 September 1942.

After graduation from high school in 1960 he spent a year at Ohio State

University and four years at the USAF Academy in Colorado. He graduated

in 1965 with a Bachelor of Science degree in Basic Sciences and a com-

mission in the U. S. Air Force. He then attended Pilot Training at

Reese AFB, Texas, and received his wings in August 1966. For the next

five years he flew weather reconnaissance C-130's investigating hurri-

canes and typhoons, with time out for a year at Nha Trang Air Base,

Republic of Vietnam, flying specially equipped "Black Bird" C-lJU's. In

February 1972 he arrived at Andrews AFB, Maryland, lor almost seven

years as a pilot with the 89th Military Airlift Wing, Special Missions.

During that time he flew the VC-131H, VC-6A, and VC-9C aircraft, pi-

loting many U. S. and foreign dignitaries, including three Vice

Presidents, the First F?mily, and several presidents of other countries.

He transferred to Wright-Patterson AFB, Ohio, in October 1978 as a

Display Systems Engineer for the Avionics Engineering Directorate of

Aeronautical Systems Division. In January 1979 he began the part-time

study program at the Air Force Institute of Technology for a Master's

Degree in Computer Systems.

Permanent address: 5560 E. Blvd. NW

Canton, Ohio 44718

139

•«•*•«—-*»-n . ._ -— ' _

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS »AGE 'When Oete Enreredl

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

V. REPORT NUMBER

AFIT/GCS/EE/82J-7

2. GOVT ACCESSION NO J. RECIPIENTS CATALOG NUMBER

«. TITLE (and Subtitle)

SUPER-CAD: AN INTEGRATED STRUCTURE FOR
DESIGN AUTOMATION

5. TYPE OF REPORT a PERIOD COVERED

MS Thesis

S PERFORMING ORG. REPORT NUMBER

7. AUTMORf«;

Hobart S. Cable, II, Major, USAF

S. CONTRACT OR GRANT NUMBER'»

9 PERFORMING ORGANIZATION NAME AND ADDRESS

Air Force Institute of Technology (AFIT-EN)
Wright-Patterson AFB, Ohio 45433

10. PROGRAM ELEMENT. PROJECT. TASK
AREA » WORK UNIT NUMBERS

II CONTROLLING OFFICE NAME ANO ADDRESS 12 REPORT OATE
June 1982

13. NUMBER OF PAGES
139

1«. MONITORING AGENCY NAME a ADDRESSflf dilferent Irom Controlling Ottice) 15. SECURITY CLASS o/ thte report)

Unclassified

IS«. DECL ASSIFICATION. DOWNGRADING
SCHEDULE

IS. DISTRIBUTION STATEMENT (ot thle Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ol the ebetract entered In Block 20, It different from Report)

18. SUPPLEMENTÄR^ NOTES
mmOSiD FOR PUBLIC RELEASE, IAW APR T9CW7 *3 «r

Deem £ D °LAVK AIR FORCE INSTITUTE OF TECHNOLOGY (ATS)

Itsfc cai-ch and WRIGHT-PATTERSON AF3 OH 45433
onl'ile'reir'tiWlü**» 19 KEY WOROS 'Cor" -u« on revert* »i

Computer ted Design
Design Autonwtion
Digital Electronics Design
Digital Systems Design
Integrated Circuit Design

etmmrv and Identity by block number)

IC Design
Logic Synthesis
Placement and Routing
Simulation

VHSIC
VLSI

20. ABSTRACT 'Conilnu« on reveree etde It neceeeary and Identity by block number;

This project proposes a structure to integrate a variety of Computer-
Aided Design tools into a complete design system. Design aids have provided
valuable assistance to designers of integrated circuits over the last decade.
However, greatly increased circuit complexity, with the approach of more
than a million devices on a single chip, is exceeding the capabilities of
current design methods. Greater automation and additional design tools are
needed.

A model is proposed which divides the design process into three stages:

DO ,: FORM
AN 73 1473 EOITION OF I NOV SS IS OBSOLE'E

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE .'When Dale Entered)

J

UNCLASSIFIED
"^

SECURITY CLASSIFICATION OF THIS PAGEfM7i»n Data Enffd)

Specification, Implementation, and Realization. The Implementation stage is
examined in detail. Design requirements can be described at different levels
of abstraction, from a description of overall behavior to specific gate-level
logic details. The model attempts to satisfy the requirements at the higher
levels using existing implementations before resorting to the design of new
circuits at the lowest level. w

The proposed system is an integral part of the Air Force Institute of
Technology's increased emphasis on Design Automation. As future efforts
address more of the details and problem areas, design tools will be developed
to support it. The system will be highly flexible, based on a great degree
of interaction with the user, and adaptable to changing technologies and re-
quirements.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGECWhan Data Enfarad'

 -

